Search results
Results from the WOW.Com Content Network
Illustration of the Kolmogorov–Smirnov statistic. The red line is a model CDF, the blue line is an empirical CDF, and the black arrow is the KS statistic.. In statistics, the Kolmogorov–Smirnov test (also K–S test or KS test) is a nonparametric test of the equality of continuous (or discontinuous, see Section 2.2), one-dimensional probability distributions.
In statistical hypothesis testing, a two-sample test is a test performed on the data of two random samples, each independently obtained from a different given population. The purpose of the test is to determine whether the difference between these two populations is statistically significant .
N = the sample size The resulting value can be compared with a chi-square distribution to determine the goodness of fit. The chi-square distribution has ( k − c ) degrees of freedom , where k is the number of non-empty bins and c is the number of estimated parameters (including location and scale parameters and shape parameters) for the ...
Confidence bands can be constructed around estimates of the empirical distribution function.Simple theory allows the construction of point-wise confidence intervals, but it is also possible to construct a simultaneous confidence band for the cumulative distribution function as a whole by inverting the Kolmogorov-Smirnov test, or by using non-parametric likelihood methods.
In statistics, Bartlett's test, named after Maurice Stevenson Bartlett, [1] is used to test homoscedasticity, that is, if multiple samples are from populations with equal variances. [2] Some statistical tests, such as the analysis of variance , assume that variances are equal across groups or samples, which can be checked with Bartlett's test.
Kolmogorov–Smirnov test: tests whether a sample is drawn from a given distribution, or whether two samples are drawn from the same distribution. Kruskal–Wallis one-way analysis of variance by ranks: tests whether > 2 independent samples are drawn from the same distribution.
In statistics, an F-test of equality of variances is a test for the null hypothesis that two normal populations have the same variance.Notionally, any F-test can be regarded as a comparison of two variances, but the specific case being discussed in this article is that of two populations, where the test statistic used is the ratio of two sample variances. [1]
Lehr's [3] [4] (rough) rule of thumb says that the sample size (for each group) for the common case of a two-sided two-sample t-test with power 80% (=) and significance level = should be: , where is an estimate of the population variance and = the to-be-detected difference in the mean values of both samples.