Search results
Results from the WOW.Com Content Network
In mathematics, a generating function is a representation of an infinite sequence of numbers as the coefficients of a formal power series.Generating functions are often expressed in closed form (rather than as a series), by some expression involving operations on the formal series.
Plot of the exponential integral function E n(z) with n=2 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D In mathematics, the exponential integral Ei is a special function on the complex plane .
The last expression is the logarithmic mean. = ( >) = (>) (the Gaussian integral) = (>) = (, >) (+) = (>)(+ +) = (>)= (>) (see Integral of a Gaussian function
(), where (2n − 1)!! is the double factorial of (2n − 1), which is the product of all odd numbers up to (2n − 1). This series diverges for every finite x , and its meaning as asymptotic expansion is that for any integer N ≥ 1 one has erfc x = e − x 2 x π ∑ n = 0 N − 1 ( − 1 ) n ( 2 n − 1 ) ! !
The formula for the exponential results from reducing the powers of G in the series expansion and identifying the respective series coefficients of G 2 and G with −cos(θ) and sin(θ) respectively. The second expression here for e Gθ is the same as the expression for R(θ) in the article containing the derivation of the generator, R(θ) = e Gθ.
For instance, e x can be defined as (+). Or e x can be defined as f x (1), where f x : R → B is the solution to the differential equation df x / dt (t) = x f x (t), with initial condition f x (0) = 1; it follows that f x (t) = e tx for every t in R.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Since e is an irrational number (see proof that e is irrational), it cannot be represented as the quotient of two integers, but it can be represented as a continued fraction. Using calculus, e may also be represented as an infinite series, infinite product, or other types of limit of a sequence.