enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euclidean tilings by convex regular polygons - Wikipedia

    en.wikipedia.org/wiki/Euclidean_tilings_by...

    Therefore, the second problem is that this nomenclature is not unique for each tessellation. In order to solve those problems, GomJau-Hogg’s notation [ 3 ] is a slightly modified version of the research and notation presented in 2012, [ 2 ] about the generation and nomenclature of tessellations and double-layer grids.

  3. List of mathematical shapes - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_shapes

    Tessellations of euclidean and hyperbolic space may also be considered regular polytopes. Note that an 'n'-dimensional polytope actually tessellates a space of one dimension less. For example, the (three-dimensional) platonic solids tessellate the 'two'-dimensional 'surface' of the sphere.

  4. Penrose tiling - Wikipedia

    en.wikipedia.org/wiki/Penrose_tiling

    Concretely, if A S has side lengths (1, 1, φ), then A L has side lengths (φ, φ, 1). B-tiles can be related to such A-tiles in two ways: If B S has the same size as A L then B L is an enlarged version φ A S of A S, with side lengths (φ, φ, φ 2 = 1 + φ) – this decomposes into an A L tile and A S tile joined along a common side of length 1.

  5. List of regular polytopes - Wikipedia

    en.wikipedia.org/wiki/List_of_regular_polytopes

    The polytopes of rank 2 (2-polytopes) are called polygons.Regular polygons are equilateral and cyclic.A p-gonal regular polygon is represented by Schläfli symbol {p}.. Many sources only consider convex polygons, but star polygons, like the pentagram, when considered, can also be regular.

  6. Category:Space-filling polyhedra - Wikipedia

    en.wikipedia.org/wiki/Category:Space-filling...

    Polyhedra that can tessellate space to form a honeycomb in which all cells are congruent. Subcategories. This category has the following 2 subcategories, out of 2 ...

  7. Pentagonal tiling - Wikipedia

    en.wikipedia.org/wiki/Pentagonal_tiling

    In geometry, a pentagonal tiling is a tiling of the plane where each individual piece is in the shape of a pentagon. A regular pentagonal tiling on the Euclidean plane is impossible because the internal angle of a regular pentagon , 108°, is not a divisor of 360°, the angle measure of a whole turn .

  8. Tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Tetrahedron

    Regular tetrahedra alone do not tessellate (fill space), but if alternated with regular octahedra in the ratio of two tetrahedra to one octahedron, they form the alternated cubic honeycomb, which is a tessellation. Some tetrahedra that are not regular, including the Schläfli orthoscheme and the Hill tetrahedron, can tessellate.

  9. Tessellation - Wikipedia

    en.wikipedia.org/wiki/Tessellation

    If a geometric shape can be used as a prototile to create a tessellation, the shape is said to tessellate or to tile the plane. The Conway criterion is a sufficient, but not necessary, set of rules for deciding whether a given shape tiles the plane periodically without reflections: some tiles fail the criterion, but still tile the plane. [19]