Search results
Results from the WOW.Com Content Network
In mathematics, especially in the area of algebra known as group theory, the term Z-group refers to a number of distinct types of groups: in the study of finite groups, a Z-group is a finite group whose Sylow subgroups are all cyclic. in the study of infinite groups, a Z-group is a group which possesses a very general form of central series.
In mathematics, the lattice of subgroups of a group is the lattice whose elements are the subgroups of , with the partial ordering being set inclusion. In this lattice, the join of two subgroups is the subgroup generated by their union , and the meet of two subgroups is their intersection .
One of the non-abelian groups is the semidirect product of a normal cyclic subgroup of order p 2 by a cyclic group of order p. The other is the quaternion group for p = 2 and a group of exponent p for p > 2. Order p 4: The classification is complicated, and gets much harder as the exponent of p increases.
A proper subgroup of a group G is a subgroup H which is a proper subset of G (that is, H ≠ G). This is often represented notationally by H < G, read as "H is a proper subgroup of G". Some authors also exclude the trivial group from being proper (that is, H ≠ {e} ). [2] [3] If H is a subgroup of G, then G is sometimes called an overgroup of H.
The principal congruence subgroup of level 2, Γ(2), is also called the modular group Λ. Since PSL(2, Z/2Z) is isomorphic to S 3, Λ is a subgroup of index 6. The group Λ consists of all modular transformations for which a and d are odd and b and c are even.
A group is called virtually cyclic if it contains a cyclic subgroup of finite index (the number of cosets that the subgroup has). In other words, any element in a virtually cyclic group can be arrived at by multiplying a member of the cyclic subgroup and a member of a certain finite set. Every cyclic group is virtually cyclic, as is every ...
Furthermore, the center of G is always an abelian and normal subgroup of G. Since all elements of Z(G) commute, it is closed under conjugation. A group homomorphism f : G → H might not restrict to a homomorphism between their centers. The image elements f (g) commute with the image f ( G), but they need not commute with all of H unless f is ...
D n is a subgroup of the symmetric group S n for n ≥ 3. Since 2n > n! for n = 1 or n = 2, for these values, D n is too large to be a subgroup. The inner automorphism group of D 2 is trivial, whereas for other even values of n, this is D n / Z 2. The cycle graphs of dihedral groups consist of an n-element cycle and n 2-element cycles. The dark ...