enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hilbert space - Wikipedia

    en.wikipedia.org/wiki/Hilbert_space

    A Hilbert space is a vector space equipped with an inner product operation, which allows lengths and angles to be defined. Furthermore, Hilbert spaces are complete, which means that there are enough limits in the space to allow the techniques of calculus to be used. A Hilbert space is a special case of a Banach space.

  3. Kernel embedding of distributions - Wikipedia

    en.wikipedia.org/wiki/Kernel_embedding_of...

    Let denote a random variable with domain and distribution .Given a symmetric, positive-definite kernel: the Moore–Aronszajn theorem asserts the existence of a unique RKHS on (a Hilbert space of functions : equipped with an inner product , and a norm ‖ ‖) for which is a reproducing kernel, i.e., in which the element (,) satisfies the reproducing property

  4. Bergman kernel - Wikipedia

    en.wikipedia.org/wiki/Bergman_kernel

    where H(D) is the space of holomorphic functions in D. Then L 2, h ( D ) is a Hilbert space: it is a closed linear subspace of L 2 ( D ), and therefore complete in its own right. This follows from the fundamental estimate, that for a holomorphic square-integrable function ƒ in D

  5. Mathematical formulation of quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Mathematical_formulation...

    As such, quantum states form a ray in projective Hilbert space, not a vector. Many textbooks fail to make this distinction, which could be partly a result of the fact that the Schrödinger equation itself involves Hilbert-space "vectors", with the result that the imprecise use of "state vector" rather than ray is very difficult to avoid. [5]

  6. Riesz representation theorem - Wikipedia

    en.wikipedia.org/wiki/Riesz_representation_theorem

    Every real Hilbert space can be extended to be a dense subset of a unique (up to bijective isometry) complex Hilbert space, called its complexification, which is why Hilbert spaces are often automatically assumed to be complex. Real and complex Hilbert spaces have in common many, but by no means all, properties and results/theorems.

  7. Unitary operator - Wikipedia

    en.wikipedia.org/wiki/Unitary_operator

    In general, any operator in a Hilbert space that acts by permuting an orthonormal basis is unitary. In the finite dimensional case, such operators are the permutation matrices . On the vector space C of complex numbers , multiplication by a number of absolute value 1 , that is, a number of the form e iθ for θ ∈ R , is a unitary operator.

  8. Spaces of test functions and distributions - Wikipedia

    en.wikipedia.org/wiki/Spaces_of_test_functions...

    This function is a test function on and is an element of (). The support of this function is the closed unit disk in . It is non-zero on the open unit disk and it is equal to 0 everywhere outside of it.

  9. Compact operator on Hilbert space - Wikipedia

    en.wikipedia.org/wiki/Compact_operator_on...

    In the mathematical discipline of functional analysis, the concept of a compact operator on Hilbert space is an extension of the concept of a matrix acting on a finite-dimensional vector space; in Hilbert space, compact operators are precisely the closure of finite-rank operators (representable by finite-dimensional matrices) in the topology induced by the operator norm.