enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hilbert space - Wikipedia

    en.wikipedia.org/wiki/Hilbert_space

    A Hilbert space is a vector space equipped with an inner product operation, which allows lengths and angles to be defined. Furthermore, Hilbert spaces are complete, which means that there are enough limits in the space to allow the techniques of calculus to be used. A Hilbert space is a special case of a Banach space.

  3. Bergman kernel - Wikipedia

    en.wikipedia.org/wiki/Bergman_kernel

    where H(D) is the space of holomorphic functions in D. Then L 2, h ( D ) is a Hilbert space: it is a closed linear subspace of L 2 ( D ), and therefore complete in its own right. This follows from the fundamental estimate, that for a holomorphic square-integrable function ƒ in D

  4. Quantum configuration space - Wikipedia

    en.wikipedia.org/wiki/Quantum_configuration_space

    The single point denoted in this space is represented by the set of functions () where and represents an index set. In quantum field theory , it is expected that the Hilbert space is also the L 2 {\displaystyle L^{2}} space on the configuration space of the field, which is infinite dimensional, with respect to some Borel measure naturally defined.

  5. Kernel embedding of distributions - Wikipedia

    en.wikipedia.org/wiki/Kernel_embedding_of...

    Let denote a random variable with domain and distribution .Given a symmetric, positive-definite kernel: the Moore–Aronszajn theorem asserts the existence of a unique RKHS on (a Hilbert space of functions : equipped with an inner product , and a norm ‖ ‖) for which is a reproducing kernel, i.e., in which the element (,) satisfies the reproducing property

  6. Positive-definite kernel - Wikipedia

    en.wikipedia.org/wiki/Positive-definite_kernel

    Moore was interested in generalization of integral equations and showed that to each such there is a Hilbert space of functions such that, for each , = (, (,)). This property is called the reproducing property of the kernel and turns out to have importance in the solution of boundary-value problems for elliptic partial differential equations.

  7. Fundamental theorem of Hilbert spaces - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    The vector space of all continuous antilinear functions on H is called the anti-dual space or complex conjugate dual space of H and is denoted by ¯ ′ (in contrast, the continuous dual space of H is denoted by ′), which we make into a normed space by endowing it with the canonical norm (defined in the same way as the canonical norm on the ...

  8. Puzzle solutions for Tuesday, Aug. 13, 2024

    www.aol.com/puzzle-solutions-tuesday-aug-13...

    Find answers to the latest online sudoku and crossword puzzles that were published in USA TODAY Network's local newspapers. ... 7 Little Words. CONES. FIGURINE. UNIQUE. SPELLING. REACTING. BOSNIA ...

  9. Direct integral - Wikipedia

    en.wikipedia.org/wiki/Direct_integral

    The simplest example of a direct integral are the L 2 spaces associated to a (σ-finite) countably additive measure μ on a measurable space X. Somewhat more generally one can consider a separable Hilbert space H and the space of square-integrable H-valued functions (,).