Search results
Results from the WOW.Com Content Network
The free radical theory of aging states that organisms age because cells accumulate free radical damage over time. [1] A free radical is any atom or molecule that has a single unpaired electron in an outer shell. [2] While a few free radicals such as melanin are not chemically reactive, most biologically relevant free radicals are highly ...
The mitochondrial theory of ageing has two varieties: free radical and non-free radical. The first is one of the variants of the free radical theory of ageing. It was formulated by J. Miquel and colleagues in 1980 [1] and was developed in the works of Linnane and coworkers (1989). [2] The second was proposed by A. N. Lobachev in 1978. [3]
Radicals can undergo a disproportionation reaction through a radical elimination mechanism (See Fig. 1). Here a radical abstracts a hydrogen atom from another same radical to form two non-radical species: an alkane and an alkene. Radicals can also undergo an elimination reaction to generate a new radical as the leaving group.
The third substrate is Q, which accepts the second electron from the QH 2 and is reduced to Q.−, which is the ubisemiquinone free radical. The first two substrates are released, but this ubisemiquinone intermediate remains bound. In the second step, a second molecule of QH 2 is bound and again passes its first electron to a cytochrome c acceptor.
Chain propagation: A radical reacts with a non-radical to produce a new radical species; Chain termination: Two radicals react with each other to create a non-radical species; In a free-radical addition, there are two chain propagation steps. In one, the adding radical attaches to a multiply-bonded precursor to give a radical with lesser bond ...
Beyond this, reperfusion also increases free radical production. Hypothermia too has been shown to minimize a patient's production of deadly free radicals during reperfusion. Many now suspect it is because hypothermia reduces both intracranial pressure and free radical production that hypothermia improves patient outcome following a blockage of ...
Initiation: The reaction is started by a free-radical source which may be a decomposing radical initiator such as AIBN. In the example in Figure 5, the initiator decomposes to form two fragments (I•) which react with a single monomer molecule to yield a propagating (i.e. growing) polymeric radical of length 1, denoted P 1 •.
The lipid hydroperoxyl radical (LOO•) can also undergo a variety of reactions to produce new radicals. [citation needed] The additional lipid radical (L•) continues the chain reaction, whilst the lipid hydroperoxide (LOOH) is the primary end product. [6] The formation of lipid radicals is sensitive to the kinetic isotope effect.