enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Malfatti circles - Wikipedia

    en.wikipedia.org/wiki/Malfatti_circles

    Label the three sides of the given triangle as a, b, and c, and label the three bitangents that are not angle bisectors as x, y, and z, where x is the bitangent to the two circles that do not touch side a, y is the bitangent to the two circles that do not touch side b, and z is the bitangent to the two circles that do not touch side c. Then the ...

  3. Mixtilinear incircles of a triangle - Wikipedia

    en.wikipedia.org/wiki/Mixtilinear_incircles_of_a...

    Then, the image of the -excircle under is a circle internally tangent to sides , and the circumcircle of , that is, the -mixtilinear incircle. Therefore, the A {\displaystyle A} -mixtilinear incircle exists and is unique, and a similar argument can prove the same for the mixtilinear incircles corresponding to B {\displaystyle B} and C ...

  4. Soddy circles of a triangle - Wikipedia

    en.wikipedia.org/wiki/Soddy_circles_of_a_triangle

    Two more circles, its Soddy circles, are tangent to the three circles centered at the vertices; their centers are called Soddy centers. The line through the Soddy centers is the Soddy line of the triangle. These circles are related to many other notable features of the triangle. They can be generalized to additional triples of tangent circles ...

  5. Circle - Wikipedia

    en.wikipedia.org/wiki/Circle

    If the angle subtended by the chord at the centre is 90°, then ℓ = r √2, where ℓ is the length of the chord, and r is the radius of the circle. If two secants are inscribed in the circle as shown at right, then the measurement of angle A is equal to one half the difference of the measurements of the enclosed arcs (⌢ and ⌢).

  6. Descartes' theorem - Wikipedia

    en.wikipedia.org/wiki/Descartes'_theorem

    Kissing circles. Given three mutually tangent circles (black), there are, in general, two possible answers (red) as to what radius a fourth tangent circle can have. In geometry, Descartes' theorem states that for every four kissing, or mutually tangent, circles, the radii of the circles satisfy a certain quadratic equation. By solving this ...

  7. Semicircle - Wikipedia

    en.wikipedia.org/wiki/Semicircle

    The length of the resulting segment is the geometric mean. This can be proven by applying the Pythagorean theorem to three similar right triangles, each having as vertices the point where the perpendicular touches the semicircle and two of the three endpoints of the segments of lengths a and b. [1]

  8. Squaring the circle - Wikipedia

    en.wikipedia.org/wiki/Squaring_the_circle

    The solution of the problem of squaring the circle by compass and straightedge requires the construction of the number , the length of the side of a square whose area equals that of a unit circle. If π {\displaystyle {\sqrt {\pi }}} were a constructible number , it would follow from standard compass and straightedge constructions that π ...

  9. Circumcircle - Wikipedia

    en.wikipedia.org/wiki/Circumcircle

    In geometry, the circumscribed circle or circumcircle of a triangle is a circle that passes through all three vertices. The center of this circle is called the circumcenter of the triangle, and its radius is called the circumradius. The circumcenter is the point of intersection between the three perpendicular bisectors of the triangle's sides ...