enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Perimeter of an ellipse - Wikipedia

    en.wikipedia.org/wiki/Perimeter_of_an_ellipse

    An ellipse has two axes and two foci Unlike most other elementary shapes, such as the circle and square , there is no algebraic equation to determine the perimeter of an ellipse . Throughout history, a large number of equations for approximations and estimates have been made for the perimeter of an ellipse.

  3. Ellipse - Wikipedia

    en.wikipedia.org/wiki/Ellipse

    An ellipse (red) obtained as the intersection of a cone with an inclined plane. Ellipse: notations Ellipses: examples with increasing eccentricity. In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant.

  4. Principal axis theorem - Wikipedia

    en.wikipedia.org/wiki/Principal_axis_theorem

    The equation is for an ellipse, since both eigenvalues are positive. (Otherwise, if one were positive and the other negative, it would be a hyperbola.) The principal axes are the lines spanned by the eigenvectors. The minimum and maximum distances to the origin can be read off the equation in diagonal form.

  5. Talk:Ellipse/Archive 1 - Wikipedia

    en.wikipedia.org/wiki/Talk:Ellipse/Archive_1

    For the ellipse equation: Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 . What are its a, b, c, e presented as A,B,C,D,E, &F? where is its center, and where is its foci? how much ...

  6. Angular eccentricity - Wikipedia

    en.wikipedia.org/wiki/Angular_eccentricity

    Angular eccentricity is one of many parameters which arise in the study of the ellipse or ellipsoid. It is denoted here by α (alpha). It is denoted here by α (alpha). It may be defined in terms of the eccentricity , e , or the aspect ratio, b/a (the ratio of the semi-minor axis and the semi-major axis ):

  7. Elliptic coordinate system - Wikipedia

    en.wikipedia.org/wiki/Elliptic_coordinate_system

    The classic applications of elliptic coordinates are in solving partial differential equations, e.g., Laplace's equation or the Helmholtz equation, for which elliptic coordinates are a natural description of a system thus allowing a separation of variables in the partial differential equations. Some traditional examples are solving systems such ...

  8. Elliptic equation - Wikipedia

    en.wikipedia.org/wiki/Elliptic_equation

    An elliptic equation can mean: The equation of an ellipse; An elliptic curve, describing the relationships between invariants of an ellipse; A differential equation with an elliptic operator; An elliptic partial differential equation

  9. Evolute - Wikipedia

    en.wikipedia.org/wiki/Evolute

    From this equation one gets the following properties of the evolute: At points with ′ = the evolute is not regular. That means: at points with maximal or minimal curvature (vertices of the given curve) the evolute has cusps. (See the diagrams of the evolutes of the parabola, the ellipse, the cycloid and the nephroid.)