enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Butterworth filter - Wikipedia

    en.wikipedia.org/wiki/Butterworth_filter

    A simple example of a Butterworth filter is the third-order low-pass design shown in the figure on the right, with = 4/3 F, = 1 Ω, = 3/2 H, and = 1/2 H. [3] Taking the impedance of the capacitors to be / and the impedance of the inductors to be , where = + is the complex frequency, the circuit equations yield the transfer function for this device:

  3. Failure rate - Wikipedia

    en.wikipedia.org/wiki/Failure_rate

    Failure rate is the frequency with which any system or component fails, expressed in failures per unit of time. It thus depends on the system conditions, time interval, and total number of systems under study. [1]

  4. Cutoff frequency - Wikipedia

    en.wikipedia.org/wiki/Cutoff_frequency

    The cutoff frequency is found with the characteristic equation of the Helmholtz equation for electromagnetic waves, which is derived from the electromagnetic wave equation by setting the longitudinal wave number equal to zero and solving for the frequency. Thus, any exciting frequency lower than the cutoff frequency will attenuate, rather than ...

  5. Rank–size distribution - Wikipedia

    en.wikipedia.org/wiki/Rank–size_distribution

    Rank–size distribution is the distribution of size by rank, in decreasing order of size. For example, if a data set consists of items of sizes 5, 100, 5, and 8, the rank-size distribution is 100, 8, 5, 5 (ranks 1 through 4). This is also known as the rank–frequency distribution, when the source data are from a frequency distribution. These ...

  6. Low-pass filter - Wikipedia

    en.wikipedia.org/wiki/Low-pass_filter

    So the order of the filter determines the amount of additional attenuation for frequencies higher than the cutoff frequency. A first-order filter, for example, reduces the signal amplitude by half (so power reduces by a factor of 4, or 6 dB), every time the frequency doubles (goes up one octave); more precisely, the power rolloff approaches 20 ...

  7. Roll-off - Wikipedia

    en.wikipedia.org/wiki/Roll-off

    First-order RC filter low-pass filter circuit. Roll-off of a first-order low-pass filter is 20 dB/decade (≈6 dB/octave) A simple first-order network such as a RC circuit will have a roll-off of 20 dB/decade. This is a little over 6 dB/octave and is the more usual description given for this roll-off.

  8. Zipf's law - Wikipedia

    en.wikipedia.org/wiki/Zipf's_law

    Zipf's law (/ z ɪ f /; German pronunciation:) is an empirical law stating that when a list of measured values is sorted in decreasing order, the value of the n-th entry is often approximately inversely proportional to n. The best known instance of Zipf's law applies to the frequency table of words in a text or corpus of natural language:

  9. Bode plot - Wikipedia

    en.wikipedia.org/wiki/Bode_plot

    The feedback gain at low frequencies and for large A OL is A FB ≈ 1 / β (look at the formula for the feedback gain at the beginning of this section for the case of large gain A OL), so an equivalent way to find f 0 dB is to look where the feedback gain intersects the open-loop gain. (Frequency f 0 dB is needed later to find the phase margin.)