Search results
Results from the WOW.Com Content Network
In propositional logic, a propositional formula is a type of syntactic formula which is well formed. If the values of all variables in a propositional formula are given, it determines a unique truth value. A propositional formula may also be called a propositional expression, a sentence, [1] or a sentential formula.
In computer science and formal methods, a SAT solver is a computer program which aims to solve the Boolean satisfiability problem.On input a formula over Boolean variables, such as "(x or y) and (x or not y)", a SAT solver outputs whether the formula is satisfiable, meaning that there are possible values of x and y which make the formula true, or unsatisfiable, meaning that there are no such ...
For real numbers, this formula is true if we substitute (arbitrarily) =, but is false if = It is the presence of a free variable, rather than the inconstant truth value, that is important; for example, even for complex numbers, where the formula is always true, it is still not considered a sentence.
A closed formula, also ground formula or sentence, is a formula in which there are no free occurrences of any variable. If A is a formula of a first-order language in which the variables v 1 , …, v n have free occurrences, then A preceded by ∀ v 1 ⋯ ∀ v n is a universal closure of A .
The propositional formulas could then be checked for unsatisfiability using a number of methods. Gilmore's program used conversion to disjunctive normal form , a form in which the satisfiability of a formula is obvious.
A propositional logic formula, also called Boolean expression, is built from variables, operators AND (conjunction, also denoted by ∧), OR (disjunction, ∨), NOT (negation, ¬), and parentheses. A formula is said to be satisfiable if it can be made TRUE by assigning appropriate logical values (i.e. TRUE, FALSE) to
In computational complexity theory, the language TQBF is a formal language consisting of the true quantified Boolean formulas.A (fully) quantified Boolean formula is a formula in quantified propositional logic (also known as Second-order propositional logic) where every variable is quantified (or bound), using either existential or universal quantifiers, at the beginning of the sentence.
In propositional logic, atomic formulas are sometimes regarded as zero-place predicates. [1] In a sense, these are nullary (i.e. 0- arity ) predicates. In first-order logic , a predicate forms an atomic formula when applied to an appropriate number of terms .