Search results
Results from the WOW.Com Content Network
A compound pendulum (or physical pendulum) is one where the rod is not massless, and may have extended size; that is, an arbitrarily shaped rigid body swinging by a pivot . In this case the pendulum's period depends on its moment of inertia around the pivot point.
In 1673 Huygens had shown that the period of a rigid bar pendulum (called a compound pendulum) was equal to the period of a simple pendulum with a length equal to the distance between the pivot point and a point called the center of oscillation, located under the center of gravity, that depends on the mass distribution along the pendulum. But ...
Using as initial conditions () = and ˙ =, the solution is given by = (), where is the largest angle attained by the pendulum (that is, is the amplitude of the pendulum). The period, the time for one complete oscillation, is given by the expression = =, which is a good approximation of the actual period when is small.
The period of a mass attached to a pendulum of length l with gravitational acceleration is given by = This shows that the period of oscillation is independent of the amplitude and mass of the pendulum but not of the acceleration due to gravity, g {\displaystyle g} , therefore a pendulum of the same length on the Moon would swing more slowly due ...
Monumental conical pendulum clock by Farcot, 1878. A conical pendulum consists of a weight (or bob) fixed on the end of a string or rod suspended from a pivot.Its construction is similar to an ordinary pendulum; however, instead of swinging back and forth along a circular arc, the bob of a conical pendulum moves at a constant speed in a circle or ellipse with the string (or rod) tracing out a ...
When calculating the period of a simple pendulum, the small-angle approximation for sine is used to allow the resulting differential equation to be solved easily by comparison with the differential equation describing simple harmonic motion.
The quantum pendulum is fundamental in understanding hindered internal rotations in chemistry, quantum features of scattering atoms, as well as numerous other quantum phenomena. Though a pendulum not subject to the small-angle approximation has an inherent nonlinearity, the Schrödinger equation for the quantized system can be solved relatively ...
If such a pendulum were attached to the inertial platform of an inertial navigation system, the platform would remain level, facing "north", "east" and "down", as it was moved about on the surface of the Earth. The Schuler period can be derived from the classic formula for the period of a pendulum: