Search results
Results from the WOW.Com Content Network
Kirchhoff's integral theorem (sometimes referred to as the Fresnel–Kirchhoff integral theorem) [1] is a surface integral to obtain the value of the solution of the homogeneous scalar wave equation at an arbitrary point P in terms of the values of the solution and the solution's first-order derivative at all points on an arbitrary closed surface (on which the integration is performed) that ...
Kirchhoff's integral theorem, sometimes referred to as the Fresnel–Kirchhoff integral theorem, [3] uses Green's second identity to derive the solution of the homogeneous scalar wave equation at an arbitrary spatial position P in terms of the solution of the wave equation and its first order derivative at all points on an arbitrary closed surface as the boundary of some volume including P.
The Kirchhoff–Helmholtz integral combines the Helmholtz equation with the Kirchhoff integral theorem [1] to produce a method applicable to acoustics, [2] seismology [3] and other disciplines involving wave propagation.
Kirchhoff showed that in many cases, the theorem can be approximated to a simpler form that is equivalent to the formation of Fresnel's formulation. [3] For an aperture illumination consisting of a single expanding spherical wave, if the radius of the curvature of the wave is sufficiently large, Kirchhoff gave the following expression for K(χ ...
This is the Fresnel diffraction integral; it means that, if the Fresnel approximation is valid, the propagating field is a spherical wave, originating at the aperture and moving along z. The integral modulates the amplitude and phase of the spherical wave. Analytical solution of this expression is still only possible in rare cases.
Integration is the basic operation in integral calculus.While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does not, so tables of known integrals are often useful.
In the derivation of the Föppl–von Kármán equations the main kinematic assumption (also known as the Kirchhoff hypothesis) is that surface normals to the plane of the plate remain perpendicular to the plate after deformation. It is also assumed that the in-plane (membrane) displacements are small and the change in thickness of the plate is ...
By the Kelvin–Stokes theorem we can rewrite the line integrals of the fields around the closed boundary curve ∂Σ to an integral of the "circulation of the fields" (i.e. their curls) over a surface it bounds, i.e. = (), Hence the Ampère–Maxwell law, the modified version of Ampère's circuital law, in integral form can be rewritten as ((+)) =