Search results
Results from the WOW.Com Content Network
Also, the effluent of existing sea water desalination plants can be treated further in a low temperature distillation to maximise the dewatering capacity of a desalination system. Low temperature distillation can accommodate variations in the plant load, running efficiently from 50 – 100% of plant design capacity depending on the available ...
The first method utilizes an ejector system motivated by steam at manometric pressure from an external source in order to recycle vapor from the desalination process. The form is designated ejectocompression or thermocompression. Using the second method, water vapor is compressed by means of a mechanical device, electrically driven in most cases.
The total evaporation in all the stages is up to approximately 85% of the water flowing through the system, depending on the range of temperatures used. With increasing temperature there are growing difficulties of scale formation and corrosion. 110-120 °C appears to be a maximum, although scale avoidance may require temperatures below 70 °C.
Schematic of a multiple effect desalination plant. The first stage is at the top. Pink areas are vapor, lighter blue areas are liquid feed water. Stronger turquoise is condensate. It is not shown how feed water enters other stages than the first. F - feed water in. S - heating steam in. C - heating steam out. W - Fresh water (condensate) out.
Zero Liquid Discharge (ZLD) is a classification of water treatment processes intended to reduce wastewater efficiently and produce clean water that is suitable for reuse (e.g., irrigation). ZLD systems employ wastewater treatment technologies and desalination to purify and recycle virtually all wastewater received. [1] [2]
Low-temperature thermal desalination (LTTD) is a desalination technique which takes advantage of the fact that water evaporates at lower temperatures at low pressures, even as low as ambient temperature. The system uses vacuum pumps to create a low pressure, low-temperature environment in which water evaporates even at a temperature difference ...
GL-5 is not necessarily backward-compatible in synchro-mesh transmissions which are designed for a GL-4 oil: GL-5 has a lower coefficient of friction due to the higher concentration of EP additives over GL-4, and thus synchros can not engage as effectively, unless a specialized friction modifier has been included within the oil's additive ...
The first system type is a so-called compact system, designed to produce a drinking water output of 100–120 litres per day (26–32 US gal/d) from sea-or brackish water. The main aim of the system design is a simple, self-sufficient, low maintenance and robust plant for target markets in arid and semi-arid areas of low infrastructure.