Search results
Results from the WOW.Com Content Network
Focused-ultrasound-mediated diagnostics or FUS-mediated diagnostics are an area of clinical diagnostic tools that use ultrasound to detect diseases and cancers. Although ultrasound has been used for imaging in various settings, focused-ultrasound refers to the detection of specific cells and biomarkers under flow combining ultrasound with lasers, microbubbles, and imaging techniques.
Ultrasound imaging deposits energy over a large area while therapeutic ultrasound focuses the energy on one target site. Focused ultrasound for intracrainial drug delivery is a non-invasive technique that uses high-frequency sound waves (focused ultrasound, or FUS) to disrupt tight junctions in the blood–brain barrier (BBB), allowing for increased passage of therapeutics into the brain.
This is known as Magnetic Resonance guided Focused Ultrasound (MRgFUS) or High Intensity Focused Ultrasound (HIFU). These procedures generally use lower frequencies than medical diagnostic ultrasound (from 0.7 to 2 MHz), but higher the frequency means lower the focusing energy. HIFU treatment is often guided by MRI.
The sign is an imaging finding using a 3.5–7.5 MHz ultrasound probe in the fourth and fifth intercostal spaces in the anterior clavicular line using the M-Mode of the machine. This finding is seen in the M-mode tracing as pleura and lung being indistinguishable as linear hyperechogenic lines and is fairly reliable for diagnosis of a pneumothorax.
This procedure uses generally lower frequencies than medical diagnostic ultrasound (250–2000 kHz), but significantly higher time-averaged intensities. The treatment is often guided by magnetic resonance imaging (MRI); the combination is then referred to as magnetic resonance-guided focused ultrasound. In the clinical setting, HIFU techniques ...
The proposal that dogs can detect cancer attracted widespread coverage in the general media. In 2015 the Huffington Post reported that studies have suggested that dogs may be able to detect lung cancer , melanoma , breast cancer and bladder cancer , and that dogs can be trained to detect cancer in 93% of cases. [ 1 ]
Ultrasound is defined by the American National Standards Institute as "sound at frequencies greater than 20 kHz". In air at atmospheric pressure, ultrasonic waves have wavelengths of 1.9 cm or less. Ultrasound can be generated at very high frequencies; ultrasound is used for sonochemistry at frequencies up to multiple hundreds of kilohertz.
In the field of cancer, ultrasound is commonly used for helping health care professionals detect and develop a diagnosis in affected patients. [34] In the context of drug delivery, ultrasound has been used for a wide variety of therapeutic applications which include but are not limited to melanoma, [16] ovarian cancer, [7] [16] and breast cancer.