Search results
Results from the WOW.Com Content Network
2D keypoints and segmentations for the Stanford Dogs Dataset. 2D keypoints and segmentations provided. 12,035 Labelled images 3D reconstruction/pose estimation 2020 [187] B. Biggs et al. The Oxford-IIIT Pet Dataset 37 categories of pets with roughly 200 images of each. Breed labeled, tight bounding box, foreground-background segmentation. ~ 7,400
Semantic segmentation is an approach detecting, for every pixel, the belonging class. [18] For example, in a figure with many people, all the pixels belonging to persons will have the same class id and the pixels in the background will be classified as background.
Objects detected with OpenCV's Deep Neural Network module (dnn) by using a YOLOv3 model trained on COCO dataset capable to detect objects of 80 common classes. Object detection is a computer technology related to computer vision and image processing that deals with detecting instances of semantic objects of a certain class (such as humans, buildings, or cars) in digital images and videos. [1]
U-Net was created by Olaf Ronneberger, Philipp Fischer, Thomas Brox in 2015 and reported in the paper "U-Net: Convolutional Networks for Biomedical Image Segmentation". [1] It is an improvement and development of FCN: Evan Shelhamer, Jonathan Long, Trevor Darrell (2014). "Fully convolutional networks for semantic segmentation". [2]
Split and merge segmentation is an image processing technique used to segment an image. The image is successively split into quadrants based on a homogeneity criterion and similar regions are merged to create the segmented result. The technique incorporates a quadtree data structure, meaning that there is a parent-child node relationship. The ...
Connected-component labeling (CCL), connected-component analysis (CCA), blob extraction, region labeling, blob discovery, or region extraction is an algorithmic application of graph theory, where subsets of connected components are uniquely labeled based on a given heuristic.
A self-organizing map (SOM) or self-organizing feature map (SOFM) is an unsupervised machine learning technique used to produce a low-dimensional (typically two-dimensional) representation of a higher-dimensional data set while preserving the topological structure of the data.
OpenML: [493] Web platform with Python, R, Java, and other APIs for downloading hundreds of machine learning datasets, evaluating algorithms on datasets, and benchmarking algorithm performance against dozens of other algorithms. PMLB: [494] A large, curated repository of benchmark datasets for evaluating supervised machine learning algorithms ...