Search results
Results from the WOW.Com Content Network
The hartree (symbol: E h), also known as the Hartree energy, is the unit of energy in the atomic units system, named after the British physicist Douglas Hartree. Its CODATA recommended value is E h = 4.359 744 722 2060 (48) × 10 −18 J [ 1 ] = 27.211 386 245 981 (30) eV .
There are two codes used with fuel efficiency units: volume/length and length/volume. In addition, certain codes are required to indicate that the conversion procedure for the unit is built-in to the module. Any other text is used as an offset in the conversion calculation that occurs with temperature units.
Note that the especially high molar values, as for paraffin, gasoline, water and ammonia, result from calculating specific heats in terms of moles of molecules. If specific heat is expressed per mole of atoms for these substances, none of the constant-volume values exceed, to any large extent, the theoretical Dulong–Petit limit of 25 J⋅mol ...
6.01 kJ/mol Entropy change of fusion at 273.15 K, 1 bar, Δ fus S: 22.0 J/(mol·K) Std enthalpy change of vaporization, Δ vap H o: 44.0 kJ/mol Enthalpy change of vaporization at 373.15 K, Δ vap H: 40.68 kJ/mol Std entropy change of vaporization, Δ vap S o: 118.89 J/(mol·K) Entropy change of vaporization at 373.15 K, Δ vap S: 109.02 J/(mol ...
The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...
In monatomic gases (like argon) at room temperature and constant volume, volumetric heat capacities are all very close to 0.5 kJ⋅K −1 ⋅m −3, which is the same as the theoretical value of 3 / 2 RT per kelvin per mole of gas molecules (where R is the gas constant and T is temperature). As noted, the much lower values for gas heat ...
The molar volume of gases around STP and at atmospheric pressure can be calculated with an accuracy that is usually sufficient by using the ideal gas law. The molar volume of any ideal gas may be calculated at various standard reference conditions as shown below: V m = 8.3145 × 273.15 / 101.325 = 22.414 dm 3 /mol at 0 °C and 101.325 kPa
Macroscopically, the ideal gas law states that, for an ideal gas, the product of pressure p and volume V is proportional to the product of amount of substance n and absolute temperature T: =, where R is the molar gas constant (8.314 462 618 153 24 J⋅K −1 ⋅mol −1). [4]