Search results
Results from the WOW.Com Content Network
A line integral of a scalar field is thus a line integral of a vector field, where the vectors are always tangential to the line of the integration. Line integrals of vector fields are independent of the parametrization r in absolute value, but they do depend on its orientation. Specifically, a reversal in the orientation of the parametrization ...
For example, consider the problem of finding the length of a quarter of the unit circle by numerically integrating the arc length integral. The upper half of the unit circle can be parameterized as y = 1 − x 2 . {\displaystyle y={\sqrt {1-x^{2}}}.}
Draw the unit circle, and let P be the point (−1, 0). A line through P (except the vertical line) is determined by its slope. Furthermore, each of the lines (except the vertical line) intersects the unit circle in exactly two points, one of which is P. This determines a function from points on the unit circle to slopes.
A line integral (sometimes called a path integral) is an integral where the function to be integrated is evaluated along a curve. [42] Various different line integrals are in use. In the case of a closed curve it is also called a contour integral. The function to be integrated may be a scalar field or a vector field.
Field lines of a vector field v, around the boundary of an open curved surface with infinitesimal line element dl along boundary, and through its interior with dS the infinitesimal surface element and n the unit normal to the surface. Top: Circulation is the line integral of v around a closed loop C. Project v along dl, then sum.
In complex analysis, the residue theorem, sometimes called Cauchy's residue theorem, is a powerful tool to evaluate line integrals of analytic functions over closed curves; it can often be used to compute real integrals and infinite series as well. It generalizes the Cauchy integral theorem and Cauchy's integral formula.
A line integral of a vector field is said to be path-independent if it depends on only two integral path endpoints regardless of which path between them is chosen: [4] = for any pair of integral paths P 1 {\displaystyle P_{1}} and P 2 {\displaystyle P_{2}} between a given pair of path endpoints in U {\displaystyle U} .
for integers n ≥ 0, where C is a circle of radius r and centred at 0, for any r with 0 < r < 1; in other words, is a contour integral, integrated over the circle described traversed once anticlockwise. We would like to take r = 1 directly, that is, to use the unit circle contour.