Ad
related to: aryabhata translation in sinhala
Search results
Results from the WOW.Com Content Network
Note that it may still be copyrighted in jurisdictions that do not apply the rule of the shorter term for US works (depending on the date of the author's death), such as Canada (70 years p.m.a.), Mainland China (50 years p.m.a., not Hong Kong or Macao), Germany (70 years p.m.a.), Mexico (100 years p.m.a.), Switzerland (70 years p.m.a.), and other countries with individual treaties.
Aryabhata ( ISO: Āryabhaṭa) or Aryabhata I [3] [4] (476–550 CE) [5] [6] was the first of the major mathematician-astronomers from the classical age of Indian mathematics and Indian astronomy. His works include the Āryabhaṭīya (which mentions that in 3600 Kali Yuga , 499 CE, he was 23 years old) [ 7 ] and the Arya- siddhanta .
Following the Ganitapada, the next section is the "Kalakriya" or "The Reckoning of Time." In it, Aryabhata divides up days, months, and years according to the movement of celestial bodies. He divides up history astronomically; it is from this exposition that a date of AD 499 has been calculated for the compilation of the Aryabhatiya. [4]
Aryabhata used this number system for representing both small and large numbers in his mathematical and astronomical calculations. This system can even be used to represent fractions and mixed fractions. For example, nga is 1 ⁄ 5, nja is 1 ⁄ 10 and jhardam (jha=9; its half) = 4 + 1 ⁄ 2. [further explanation needed]
In this measure, the circumference of a circle is 360° = (60 × 360) minutes = 21600 minutes. The radius of the circle, the measure of whose circumference is 21600 minutes, is 21600 / 2π minutes. Computing this using the value π = 3.1416 known to Aryabhata one gets the radius of the circle as 3438 minutes approximately. Āryabhaṭa's sine ...
In his Aryabhatiyabhasya, a commentary on Aryabhata's Aryabhatiya, Nilakantha developed a computational system for a partially heliocentric planetary model in which Mercury, Venus, Mars, Jupiter and Saturn orbit the Sun, which in turn orbits the Earth, similar to the Tychonic system later proposed by Tycho Brahe in the late 16th century. Most ...
Aryabhata gave the algorithm for solving the linear Diophantine equation in verses 32–33 of Ganitapada of Aryabhatiya. [1] Taking Bhāskara I's explanation of these verses also into consideration, Bibhutibbhushan Datta has given the following translation of these verses: Description of Kuttaka as given by Aryabhata in Aryabhatiya
The Brahmi letter , Jha, is probably derived from the altered Aramaic Zayin, and is thus related to the modern Latin and Greek Z.A couple of identifiable styles of writing the Brahmi Jha can be found, most associated with a specific set of inscriptions from an artifact or diverse records from an historic period. [2]
Ad
related to: aryabhata translation in sinhala