Search results
Results from the WOW.Com Content Network
The interior angle concept can be extended in a consistent way to crossed polygons such as star polygons by using the concept of directed angles.In general, the interior angle sum in degrees of any closed polygon, including crossed (self-intersecting) ones, is then given by 180(n–2k)°, where n is the number of vertices, and the strictly positive integer k is the number of total (360 ...
For a polyhedron, the defect at a vertex equals 2π minus the sum of all the angles at the vertex (all the faces at the vertex are included). If a polyhedron is convex, then the defect of each vertex is always positive. If the sum of the angles exceeds a full turn, as occurs in some vertices of many non-convex polyhedra, then the defect is ...
The angles of proper spherical triangles are (by convention) less than π, so that < + + < (Todhunter, [1] Art.22,32). In particular, the sum of the angles of a spherical triangle is strictly greater than the sum of the angles of a triangle defined on the Euclidean plane, which is always exactly π radians.
Trigonometry has been noted for its many identities, that is, equations that are true for all possible inputs. [83] Identities involving only angles are known as trigonometric identities. Other equations, known as triangle identities, [84] relate both the sides and angles of a given triangle.
Exterior angle – The exterior angle is the supplementary angle to the interior angle. Tracing around a convex n -gon, the angle "turned" at a corner is the exterior or external angle. Tracing all the way around the polygon makes one full turn , so the sum of the exterior angles must be 360°.
The sum of the angles of a spherical triangle is not equal to 180°. A sphere is a curved surface, but locally the laws of the flat (planar) Euclidean geometry are good approximations. In a small triangle on the face of the earth, the sum of the angles is only slightly more than 180 degrees. A sphere with a spherical triangle on it.
An equilateral pentagon is a polygon with five sides of equal length. However, its five internal angles can take a range of sets of values, thus permitting it to form a family of pentagons. In contrast, the regular pentagon is unique up to similarity, because it is equilateral and it is equiangular (its five angles are equal).
Ordinary trigonometry studies triangles in the Euclidean plane .There are a number of ways of defining the ordinary Euclidean geometric trigonometric functions on real numbers, for example right-angled triangle definitions, unit circle definitions, series definitions [broken anchor], definitions via differential equations [broken anchor], and definitions using functional equations.