Search results
Results from the WOW.Com Content Network
x erf x 1 − erf x; 0: 0: 1: 0.02: 0.022 564 575: 0.977 435 425: 0.04: 0.045 111 106: 0.954 888 894: 0.06: 0.067 621 594: 0.932 378 406: 0.08: 0.090 078 126: 0.909 ...
Best rational approximants for π (green circle), e (blue diamond), ϕ (pink oblong), (√3)/2 (grey hexagon), 1/√2 (red octagon) and 1/√3 (orange triangle) calculated from their continued fraction expansions, plotted as slopes y/x with errors from their true values (black dashes)
In mathematics, approximation theory is concerned with how functions can best be approximated with simpler functions, and with quantitatively characterizing the errors introduced thereby. What is meant by best and simpler will depend on the application.
Such function always exists. For more details and a tutorial treatment, see the monograph by Brenner and Scott. [ 3 ] The result can be extended to the case when the domain Ω {\displaystyle \textstyle \Omega } is the union of a finite number of star-shaped domains, which is slightly more general than the strong cone property, and other ...
Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables (+) = + + (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...
Polynomial approximations [ edit ] The Weierstrass approximation theorem states that every continuous function defined on a closed interval [a,b] can be uniformly approximated as closely as desired by a polynomial function. [ 2 ]
When one does not know the exact solution, one may look for the approximation with small residual. Residuals appear in many areas in mathematics, including iterative solvers such as the generalized minimal residual method, which seeks solutions to equations by systematically minimizing the residual.
Stability is a measure of the sensitivity to rounding errors of a given numerical procedure; by contrast, the condition number of a function for a given problem indicates the inherent sensitivity of the function to small perturbations in its input and is independent of the implementation used to solve the problem.