enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Well-order - Wikipedia

    en.wikipedia.org/wiki/Well-order

    In mathematics, a well-order (or well-ordering or well-order relation) on a set S is a total ordering on S with the property that every non-empty subset of S has a least element in this ordering. The set S together with the ordering is then called a well-ordered set (or woset). [1]

  3. Von Neumann cardinal assignment - Wikipedia

    en.wikipedia.org/wiki/Von_Neumann_cardinal...

    With the full axiom of choice, every set is well-orderable, so every set has a cardinal; we order the cardinals using the inherited ordering from the ordinal numbers. This is readily found to coincide with the ordering via ≤ c. This is a well-ordering of cardinal numbers.

  4. Well-ordering principle - Wikipedia

    en.wikipedia.org/wiki/Well-ordering_principle

    Considering the natural numbers as a subset of the real numbers, and assuming that we know already that the real numbers are complete (again, either as an axiom or a theorem about the real number system), i.e., every bounded (from below) set has an infimum, then also every set of natural numbers has an infimum, say .

  5. Glossary of set theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_set_theory

    A concept in set theory and logic that categorizes well-ordered sets by their structure, such that two sets have the same order type if there is a bijective function between them that preserves order. ordinal 1. An ordinal is the order type of a well-ordered set, usually represented by a von Neumann ordinal, a transitive set well ordered by ∈. 2.

  6. Ordinal number - Wikipedia

    en.wikipedia.org/wiki/Ordinal_number

    The original definition of ordinal numbers, found for example in the Principia Mathematica, defines the order type of a well-ordering as the set of all well-orderings similar (order-isomorphic) to that well-ordering: in other words, an ordinal number is genuinely an equivalence class of well-ordered sets.

  7. Well-ordering theorem - Wikipedia

    en.wikipedia.org/wiki/Well-ordering_theorem

    A set X is well-ordered by a strict total order if every non-empty subset of X has a least element under the ordering. The well-ordering theorem together with Zorn's lemma are the most important mathematical statements that are equivalent to the axiom of choice (often called AC, see also Axiom of choice § Equivalents). [1] [2] Ernst Zermelo ...

  8. Remove Banner Ads with Ad-Free AOL Mail | AOL Products

    www.aol.com/products/utilities/ad-free-mail

    AOL Promotions. You’ll no longer see paid ads, but you’ll continue to see promotions for AOL products and brands. We want to keep you in-the-know of our latest product news and information.

  9. Order type - Wikipedia

    en.wikipedia.org/wiki/Order_type

    Every well-ordered set is order-equivalent to exactly one ordinal number, by definition. The ordinal numbers are taken to be the canonical representatives of their classes, and so the order type of a well-ordered set is usually identified with the corresponding ordinal. Order types thus often take the form of arithmetic expressions of ordinals.