Search results
Results from the WOW.Com Content Network
The data shown is a random sample of 10,000 points from a normal distribution with a mean of 0 and a standard deviation of 1. The data used to construct a histogram are generated via a function m i that counts the number of observations that fall into each of the disjoint categories (known as bins).
The sample size is an important feature of any empirical study in which the goal is to make inferences about a population from a sample. In practice, the sample size used in a study is usually determined based on the cost, time, or convenience of collecting the data, and the need for it to offer sufficient statistical power. In complex studies ...
The sample extrema can be used for a simple normality test, specifically of kurtosis: one computes the t-statistic of the sample maximum and minimum (subtracts sample mean and divides by the sample standard deviation), and if they are unusually large for the sample size (as per the three sigma rule and table therein, or more precisely a Student ...
where is the standard deviation of the normal distribution and is estimated from the data. With this value of bin width Scott demonstrates that [5] / showing how quickly the histogram approximation approaches the true distribution as the number of samples increases.
With the factor 2 replaced by approximately 2.59, the Freedman–Diaconis rule asymptotically matches Scott's Rule for data sampled from a normal distribution. Another approach is to use Sturges's rule : use a bin width so that there are about 1 + log 2 n {\displaystyle 1+\log _{2}n} non-empty bins, however this approach is not recommended ...
Considerations of the shape of a distribution arise in statistical data analysis, where simple quantitative descriptive statistics and plotting techniques such as histograms can lead on to the selection of a particular family of distributions for modelling purposes. The normal distribution, often called the "bell curve" Exponential distribution
Common examples of measures of statistical dispersion are the variance, standard deviation, and interquartile range. For instance, when the variance of data in a set is large, the data is widely scattered. On the other hand, when the variance is small, the data in the set is clustered.
A v-optimal histogram is based on the concept of minimizing a quantity which is called the weighted variance in this context. [1] This is defined as = =, where the histogram consists of J bins or buckets, n j is the number of items contained in the jth bin and where V j is the variance between the values associated with the items in the jth bin.