Search results
Results from the WOW.Com Content Network
The Planck response is the additional thermal radiation objects emit as they get warmer. Whether Planck response is a climate change feedback depends on the context. In climate science the Planck response can be treated as an intrinsic part of warming that is separate from radiative feedbacks and carbon cycle feedbacks.
Present-day climate change includes both global warming—the ongoing increase in global average temperature—and its wider effects on Earth's climate. Climate change in a broader sense also includes previous long-term changes to Earth's climate.
The five components of the climate system all interact. They are the atmosphere, the hydrosphere, the cryosphere, the lithosphere and the biosphere. [1]: 1451 Earth's climate system is a complex system with five interacting components: the atmosphere (air), the hydrosphere (water), the cryosphere (ice and permafrost), the lithosphere (earth's upper rocky layer) and the biosphere (living things).
A slower positive feedback is the ice-albedo feedback. For example, the loss of Arctic ice due to rising temperatures makes the region less reflective, leading to greater absorption of energy and even faster ice melt rates, thus positive influence on ΔE S. [30] Collectively, feedbacks tend to amplify global warming or cooling. [31]: 94
Tectonic–climatic interaction is the interrelationship between tectonic processes and the climate system. The tectonic processes in question include orogenesis, volcanism, and erosion, while relevant climatic processes include atmospheric circulation, orographic lift, monsoon circulation and the rain shadow effect.
Radiative forcing is defined in the IPCC Sixth Assessment Report as follows: "The change in the net, downward minus upward, radiative flux (expressed in W/m 2) due to a change in an external driver of climate change, such as a change in the concentration of carbon dioxide (CO 2), the concentration of volcanic aerosols or the output of the Sun." [3]: 2245
In the 1980s, the terms global warming and climate change became more common, often being used interchangeably. [29] [30] [31] Scientifically, global warming refers only to increased surface warming, while climate change describes both global warming and its effects on Earth's climate system, such as precipitation changes. [28]
The increasing temperatures have secondary effects on the climate system. These secondary effects are called climate feedbacks. Self-reinforcing feedbacks include for example the melting of sunlight-reflecting ice as well as higher evapotranspiration. The latter effect increases average atmospheric water vapour, which is itself a greenhouse gas.