Search results
Results from the WOW.Com Content Network
The strongly connected components of a directed graph form a partition into subgraphs that are themselves strongly connected. It is possible to test the strong connectivity of a graph, or to find its strongly connected components, in linear time (that is, Θ( V + E )).
Tarjan's strongly connected components algorithm is an algorithm in graph theory for finding the strongly connected components (SCCs) of a directed graph. It runs in linear time , matching the time bound for alternative methods including Kosaraju's algorithm and the path-based strong component algorithm .
In computer science, Kosaraju-Sharir's algorithm (also known as Kosaraju's algorithm) is a linear time algorithm to find the strongly connected components of a directed graph. Aho, Hopcroft and Ullman credit it to S. Rao Kosaraju and Micha Sharir. Kosaraju suggested it in 1978 but did not publish it, while Sharir independently discovered it and ...
This graph becomes disconnected when the right-most node in the gray area on the left is removed This graph becomes disconnected when the dashed edge is removed.. In mathematics and computer science, connectivity is one of the basic concepts of graph theory: it asks for the minimum number of elements (nodes or edges) that need to be removed to separate the remaining nodes into two or more ...
In graph theory, the strongly connected components of a directed graph may be found using an algorithm that uses depth-first search in combination with two stacks, one to keep track of the vertices in the current component and the second to keep track of the current search path. [1]
The graph on the upper left can be strongly oriented, as shown by the lower left graph which is strongly connected. The lower right is an orientation of the upper right graph, but not a strong one. In graph theory , a strong orientation of an undirected graph is an assignment of a direction to each edge (an orientation ) that makes it into a ...
In graph theory, Robbins' theorem, named after Herbert Robbins (), states that the graphs that have strong orientations are exactly the 2-edge-connected graphs.That is, it is possible to choose a direction for each edge of an undirected graph G, turning it into a directed graph that has a path from every vertex to every other vertex, if and only if G is connected and has no bridge.
A graph with three components. In graph theory, a component of an undirected graph is a connected subgraph that is not part of any larger connected subgraph. The components of any graph partition its vertices into disjoint sets, and are the induced subgraphs of those sets. A graph that is itself connected has exactly one component, consisting ...