enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bernt Øksendal - Wikipedia

    en.wikipedia.org/wiki/Bernt_Øksendal

    In 1982 he taught a postgraduate course in stochastic calculus at the University of Edinburgh which led to the book Øksendal, Bernt K. (1982). Stochastic Differential Equations: An Introduction with Applications. Springer, Berlin. In 2005, he taught a course in stochastic calculus at the African Institute for Mathematical Sciences in Cape Town.

  3. Malliavin calculus - Wikipedia

    en.wikipedia.org/wiki/Malliavin_calculus

    The calculus has been applied to stochastic partial differential equations as well. The calculus allows integration by parts with random variables; this operation is used in mathematical finance to compute the sensitivities of financial derivatives. The calculus has applications in, for example, stochastic filtering.

  4. Infinitesimal generator (stochastic processes) - Wikipedia

    en.wikipedia.org/wiki/Infinitesimal_generator...

    In mathematics — specifically, in stochastic analysis — the infinitesimal generator of a Feller process (i.e. a continuous-time Markov process satisfying certain regularity conditions) is a Fourier multiplier operator [1] that encodes a great deal of information about the process.

  5. Stochastic differential equation - Wikipedia

    en.wikipedia.org/wiki/Stochastic_differential...

    Stochastic differential equations originated in the theory of Brownian motion, in the work of Albert Einstein and Marian Smoluchowski in 1905, although Louis Bachelier was the first person credited with modeling Brownian motion in 1900, giving a very early example of a stochastic differential equation now known as Bachelier model.

  6. Geometric Brownian motion - Wikipedia

    en.wikipedia.org/wiki/Geometric_Brownian_motion

    A stochastic process S t is said to follow a GBM if it satisfies the following stochastic differential equation (SDE): = + where is a Wiener process or Brownian motion, and ('the percentage drift') and ('the percentage volatility') are constants.

  7. Supersymmetric theory of stochastic dynamics - Wikipedia

    en.wikipedia.org/wiki/Supersymmetric_Theory_of...

    Supersymmetric theory of stochastic dynamics (STS) is a multidisciplinary approach to stochastic dynamics on the intersection of dynamical systems theory, statistical physics, stochastic differential equations (SDE), topological field theories, and the theory of pseudo-Hermitian operators. The theory can be viewed as a generalization of the ...

  8. Itô calculus - Wikipedia

    en.wikipedia.org/wiki/Itô_calculus

    SDEs frequently occur in physics in Stratonovich form, as limits of stochastic differential equations driven by colored noise if the correlation time of the noise term approaches zero. For a recent treatment of different interpretations of stochastic differential equations see for example (Lau & Lubensky 2007).

  9. Markov chain approximation method - Wikipedia

    en.wikipedia.org/wiki/Markov_chain_approximation...

    In numerical methods for stochastic differential equations, the Markov chain approximation method (MCAM) belongs to the several numerical (schemes) approaches used in stochastic control theory. Regrettably the simple adaptation of the deterministic schemes for matching up to stochastic models such as the Runge–Kutta method does not work at all.