enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Modulo - Wikipedia

    en.wikipedia.org/wiki/Modulo

    [1] For example, the expression "5 mod 2" evaluates to 1, because 5 divided by 2 has a quotient of 2 and a remainder of 1, while "9 mod 3" would evaluate to 0, because 9 divided by 3 has a quotient of 3 and a remainder of 0. Although typically performed with a and n both being integers, many computing systems now allow other types of numeric ...

  3. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    Adding 4 hours to 9 o'clock gives 1 o'clock, since 13 is congruent to 1 modulo 12. In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones ...

  4. List of mathematical constants - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_constants

    A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. [1]

  5. Covering system - Wikipedia

    en.wikipedia.org/wiki/Covering_system

    A covering system is called irredundant (or minimal) if all the residue classes are required to cover the integers. The first two examples are disjoint. The third example is distinct. A system (i.e., an unordered multi-set) of finitely many residue classes is called an -cover if it covers every integer at least times, and an exact -cover if it ...

  6. Montgomery modular multiplication - Wikipedia

    en.wikipedia.org/wiki/Montgomery_modular...

    Using the extended Euclidean algorithm, compute −5 ⋅ 10 + 3 ⋅ 17 = 1, so N′ will be −3 mod 10 = 7. The Montgomery forms of 7 and 15 are 70 mod 17 = 2 and 150 mod 17 = 14, respectively. Their product 28 is the input T to REDC, and since 28 < RN = 170, the assumptions of REDC are satisfied.

  7. Modular multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Modular_multiplicative_inverse

    X ≡ 6 (mod 11) has common solutions since 5,7 and 11 are pairwise coprime. A solution is given by X = t 1 (7 × 11) × 4 + t 2 (5 × 11) × 4 + t 3 (5 × 7) × 6. where t 1 = 3 is the modular multiplicative inverse of 7 × 11 (mod 5), t 2 = 6 is the modular multiplicative inverse of 5 × 11 (mod 7) and t 3 = 6 is the modular multiplicative ...

  8. Proof of Fermat's Last Theorem for specific exponents

    en.wikipedia.org/wiki/Proof_of_Fermat's_Last...

    x 5 ≡ x (mod 5) y 5 ≡ y (mod 5) z 5 ≡ z (mod 5) and therefore x + y + z ≡ 0 (mod 5) This equation forces two of the three numbers x, y, and z to be equivalent modulo 5, which can be seen as follows: Since they are indivisible by 5, x, y and z cannot equal 0 modulo 5, and must equal one of four possibilities: 1, −1, 2, or −2. If they ...

  9. Quadratic reciprocity - Wikipedia

    en.wikipedia.org/wiki/Quadratic_reciprocity

    The former are ≡ ±1 (mod 5) and the latter are ≡ ±2 (mod 5). Since the only residues (mod 5) are ±1, we see that 5 is a quadratic residue modulo every prime which is a residue modulo 5. −5 is in rows 3, 7, 23, 29, 41, 43, and 47 but not in rows 11, 13, 17, 19, 31, or 37.