Search results
Results from the WOW.Com Content Network
Depending on the context, solving an equation may consist to find either any solution (finding a single solution is enough), all solutions, or a solution that satisfies further properties, such as belonging to a given interval. When the task is to find the solution that is the best under some criterion, this is an optimization problem. Solving ...
In mathematics, a product is the result of multiplication, or an expression that identifies objects (numbers or variables) to be multiplied, called factors.For example, 21 is the product of 3 and 7 (the result of multiplication), and (+) is the product of and (+) (indicating that the two factors should be multiplied together).
In mathematics, for a sequence of complex numbers a 1, a 2, a 3, ... the infinite product ∏ n = 1 ∞ a n = a 1 a 2 a 3 ⋯ {\displaystyle \prod _{n=1}^{\infty }a_{n}=a_{1}a_{2}a_{3}\cdots } is defined to be the limit of the partial products a 1 a 2 ... a n as n increases without bound.
It is the product of and the discriminant of the corresponding depressed cubic. Using the formula relating the general cubic and the associated depressed cubic, this implies that the discriminant of the general cubic can be written as 4 ( b 2 − 3 a c ) 3 − ( 2 b 3 − 9 a b c + 27 a 2 d ) 2 27 a 2 . {\displaystyle {\frac {4(b^{2}-3ac)^{3 ...
The distribution of the product of correlated non-central normal samples was derived by Cui et al. [11] and takes the form of an infinite series of modified Bessel functions of the first kind. Moments of product of correlated central normal samples. For a central normal distribution N(0,1) the moments are
1. Factorial: if n is a positive integer, n! is the product of the first n positive integers, and is read as "n factorial". 2. Double factorial: if n is a positive integer, n!! is the product of all positive integers up to n with the same parity as n, and is read as "the double factorial of n". 3.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The following simplified example shows the economy one gets from the Cholesky decomposition: suppose the goal is to generate two correlated normal variables and with given correlation coefficient . To accomplish that, it is necessary to first generate two uncorrelated Gaussian random variables z 1 {\textstyle z_{1}} and z 2 {\textstyle z_{2 ...