Search results
Results from the WOW.Com Content Network
These symbols are called logical connectives, logical operators, propositional operators, or, in classical logic, truth-functional connectives. For the rules which allow new well-formed formulas to be constructed by joining other well-formed formulas using truth-functional connectives, see well-formed formula .
What links here; Upload file; Special pages; Printable version; Page information; Get shortened URL; Download QR code
The following table lists many common symbols, together with their name, how they should be read out loud, and the related field of mathematics. Additionally, the subsequent columns contains an informal explanation, a short example, the Unicode location, the name for use in HTML documents, [1] and the LaTeX symbol.
In high-level computer programming and digital electronics, logical conjunction is commonly represented by an infix operator, usually as a keyword such as "AND", an algebraic multiplication, or the ampersand symbol & (sometimes doubled as in &&). Many languages also provide short-circuit control structures corresponding to logical conjunction.
Logical constants are always given the same meaning by every interpretation of the standard kind, so that only the meanings of the non-logical symbols are changed. Logical constants include quantifier symbols ∀ ("all") and ∃ ("some"), symbols for logical connectives ∧ ("and"), ∨ ("or"), ¬ ("not"), parentheses and other grouping symbols ...
Classical propositional logic is a truth-functional logic, [3] in that every statement has exactly one truth value which is either true or false, and every logical connective is truth functional (with a correspondent truth table), thus every compound statement is a truth function. [4] On the other hand, modal logic is non-truth-functional.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
A truth table is a mathematical table used in logic—specifically in connection with Boolean algebra, Boolean functions, and propositional calculus—which sets out the functional values of logical expressions on each of their functional arguments, that is, for each combination of values taken by their logical variables. [1]