Search results
Results from the WOW.Com Content Network
The gradient of the function f(x,y) = −(cos 2 x + cos 2 y) 2 depicted as a projected vector field on the bottom plane. The gradient (or gradient vector field) of a scalar function f(x 1, x 2, x 3, …, x n) is denoted ∇f or ∇ → f where ∇ denotes the vector differential operator, del.
Slope illustrated for y = (3/2)x − 1.Click on to enlarge Slope of a line in coordinates system, from f(x) = −12x + 2 to f(x) = 12x + 2. The slope of a line in the plane containing the x and y axes is generally represented by the letter m, [5] and is defined as the change in the y coordinate divided by the corresponding change in the x coordinate, between two distinct points on the line.
The gradient theorem states that if the vector field F is the gradient of some scalar-valued function (i.e., if F is conservative), then F is a path-independent vector field (i.e., the integral of F over some piecewise-differentiable curve is dependent only on end points). This theorem has a powerful converse:
l = slope length α = angle of inclination. The grade (US) or gradient (UK) (also called stepth, slope, incline, mainfall, pitch or rise) of a physical feature, landform or constructed line refers to the tangent of the angle of that surface to the horizontal. It is a special case of the slope, where zero indicates horizontality. A larger number ...
The line with equation ax + by + c = 0 has slope -a/b, so any line perpendicular to it will have slope b/a (the negative reciprocal). Let ( m , n ) be the point of intersection of the line ax + by + c = 0 and the line perpendicular to it which passes through the point ( x 0 , y 0 ).
Equivalently, the slope could be estimated by employing positions x − h and x. Another two-point formula is to compute the slope of a nearby secant line through the points (x − h, f(x − h)) and (x + h, f(x + h)). The slope of this line is (+) ().
In optimization, line search is a basic iterative approach to find a local minimum of an objective function:. It first finds a descent direction along which the objective function f {\displaystyle f} will be reduced, and then computes a step size that determines how far x {\displaystyle \mathbf {x} } should move along that direction.
The red line represents the 'Median line', while the blue line is the 'Mean line'. This plot illustrates a dataset with a power-law relationship between the variables, represented by a concave line. When both variables are log-transformed, as shown in the right plot of Figure 1, titled 'Log-Log Linear Line with Normal Noise', the relationship ...