enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Optical microscope - Wikipedia

    en.wikipedia.org/wiki/Optical_microscope

    The optical microscope, also referred to as a light microscope, is a type of microscope that commonly uses visible light and a system of lenses to generate magnified images of small objects. Optical microscopes are the oldest design of microscope and were possibly invented in their present compound form in the 17th century.

  3. Diffraction-limited system - Wikipedia

    en.wikipedia.org/wiki/Diffraction-limited_system

    Memorial in Jena, Germany to Ernst Karl Abbe, who approximated the diffraction limit of a microscope as = ⁡, where d is the resolvable feature size, λ is the wavelength of light, n is the index of refraction of the medium being imaged in, and θ (depicted as α in the inscription) is the half-angle subtended by the optical objective lens (representing the numerical aperture).

  4. Optical transfer function - Wikipedia

    en.wikipedia.org/wiki/Optical_transfer_function

    Optical transfer function or modulation transfer functions are thus generally two-dimensional functions. The following figures shows the two-dimensional equivalent of the ideal and the imperfect system discussed earlier, for an optical system with trefoil, a non-rotational-symmetric aberration. Optical transfer functions are not always real-valued.

  5. Near-field optics - Wikipedia

    en.wikipedia.org/wiki/Near-field_optics

    The limit of optical resolution in a conventional microscope, the so-called diffraction limit, is in the order of half the wavelength of the light used to image.Thus, when imaging at visible wavelengths, the smallest resolvable features are several hundred nanometers in size (although point-like sources, such as quantum dots, can be resolved quite readily).

  6. Bright-field microscopy - Wikipedia

    en.wikipedia.org/wiki/Bright-field_microscopy

    The practical limit to magnification with a light microscope is around 1300×. Higher magnifications are possible, but it becomes increasingly difficult to maintain image clarity as the magnification increases. [3] Bright-field microscopes have low apparent optical resolution due to the blur of out-of-focus material;

  7. Contrast transfer function - Wikipedia

    en.wikipedia.org/wiki/Contrast_transfer_function

    The contrast transfer function determines how much phase signal gets transmitted to the real space wavefunction in the image plane. As the modulus squared of the real space wavefunction gives the image signal, the contrast transfer function limits how much information can ultimately be translated into an image. The form of the contrast transfer ...

  8. Microscopic scale - Wikipedia

    en.wikipedia.org/wiki/Microscopic_scale

    The shape and texture in each individual grain is made visible through the microscope. [7] As the microscopic scale covers any object that cannot be seen by the naked eye, yet is visible under a microscope, the range of objects that fall under this scale can be as small as an atom, visible underneath a transmission electron microscope. [8]

  9. Objective (optics) - Wikipedia

    en.wikipedia.org/wiki/Objective_(optics)

    One of the most important properties of microscope objectives is their magnification.The magnification typically ranges from 4× to 100×. It is combined with the magnification of the eyepiece to determine the overall magnification of the microscope; a 4× objective with a 10× eyepiece produces an image that is 40 times the size of the object.