Search results
Results from the WOW.Com Content Network
Drag coefficients in fluids with Reynolds number approximately 10 4 [1] [2] Shapes are depicted with the same projected frontal area. In fluid dynamics, the drag coefficient (commonly denoted as: , or ) is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water.
Drag is a force that acts parallel to and in the same direction as the airflow. The drag coefficient of an automobile measures the way the automobile passes through the surrounding air. When automobile companies design a new vehicle they take into consideration the automobile drag coefficient in addition to the other performance characteristics ...
For an object with well-defined fixed separation points, like a circular disk with its plane normal to the flow direction, the drag coefficient is constant for Re > 3,500. [17] The further the drag coefficient C d is, in general, a function of the orientation of the flow with respect to the object (apart from symmetrical objects like a sphere).
The equation is precise – it simply provides the definition of (drag coefficient), which varies with the Reynolds number and is found by experiment. Of particular importance is the u 2 {\displaystyle u^{2}} dependence on flow velocity, meaning that fluid drag increases with the square of flow velocity.
Zero-lift drag coefficient; This page was last edited on 24 June 2020, at 21:07 (UTC). Text is available under the Creative Commons Attribution-ShareAlike License 4 ...
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
The penultimate College Football Playoff rankings will be released Tuesday. Our projection of how the top 10 will look ahead of championship weekend.
In mechanics and aerodynamics, the drag area of an object represents the effective size of the object as it is "seen" by the fluid flow around it. The drag area is usually expressed as a product , where is a representative area of the object, and is the drag coefficient, which represents what shape it has and how streamlined it is.