Search results
Results from the WOW.Com Content Network
In null-hypothesis significance testing, the p-value [note 1] is the probability of obtaining test results at least as extreme as the result actually observed, under the assumption that the null hypothesis is correct. [2] [3] A very small p-value means that such an extreme observed outcome would be very unlikely under the null hypothesis.
Under Fisher's method, two small p-values P 1 and P 2 combine to form a smaller p-value.The darkest boundary defines the region where the meta-analysis p-value is below 0.05.. For example, if both p-values are around 0.10, or if one is around 0.04 and one is around 0.25, the meta-analysis p-value is around 0
To determine whether a result is statistically significant, a researcher calculates a p-value, which is the probability of observing an effect of the same magnitude or more extreme given that the null hypothesis is true. [5] [12] The null hypothesis is rejected if the p-value is less than (or equal to) a predetermined level, .
The p-value is not the probability that the observed effects were produced by random chance alone. [2] The p-value is computed under the assumption that a certain model, usually the null hypothesis, is true. This means that the p-value is a statement about the relation of the data to that hypothesis. [2]
The p-value is the probability that a test statistic which is at least as extreme as the one obtained would occur under the null hypothesis. At a significance level of 0.05, a fair coin would be expected to (incorrectly) reject the null hypothesis (that it is fair) in 1 out of 20 tests on average.
According to this formula, the power increases with the values of the effect size and the sample size n, and reduces with increasing variability . In the trivial case of zero effect size, power is at a minimum ( infimum ) and equal to the significance level of the test α , {\displaystyle \alpha \,,} in this example 0.05.
The cumulative distribution function (shown as F(x)) gives the p values as a function of the q values. The quantile function does the opposite: it gives the q values as a function of the p values. Note that the portion of F(x) in red is a horizontal line segment.
The procedures of Bonferroni and Holm control the FWER under any dependence structure of the p-values (or equivalently the individual test statistics).Essentially, this is achieved by accommodating a `worst-case' dependence structure (which is close to independence for most practical purposes).