Search results
Results from the WOW.Com Content Network
However, some organisms are polyploid. Polyploidy is especially common in plants. Most eukaryotes have diploid somatic cells, but produce haploid gametes (eggs and sperm) by meiosis. A monoploid has only one set of chromosomes, and the term is usually only applied to cells or organisms that are normally diploid.
Zygoidy is the state in which the chromosomes are paired and can undergo meiosis. The zygoid state of a species may be diploid or polyploid. [52] [53] In the azygoid state the chromosomes are unpaired. It may be the natural state of some asexual species or may occur after meiosis. In diploid organisms the azygoid state is monoploid.
There are many ways in which a polyploid organism can convert back to a diploid status. This is usually achieved by elimination of duplicated genes. The main goals of diploidization are: (1) To ensure proper gene dosage; and (2) to maintain stable cellular division processes.
The list of organisms by chromosome count describes ploidy or numbers of chromosomes in the cells of various plants, animals, protists, and other living organisms.This number, along with the visual appearance of the chromosome, is known as the karyotype, [1] [2] [3] and can be found by looking at the chromosomes through a microscope.
Polyploid speciation is commonly observed in plants because their nature allows them to support genome duplications. Polyploids are considered a new species because the occurrence of a whole genome duplication imposes post-zygotic barriers, which enable reproductive isolation between parent populations and hybrid offspring.
The life cycle of ferns and their allies, including clubmosses and horsetails, the conspicuous plant observed in the field is the diploid sporophyte. The haploid spores develop in sori on the underside of the fronds and are dispersed by the wind (or in some cases, by floating on water).
In haploids produced from anther culture, it is observed that some plants are aneuploids and some are mixed haploid-diploid types. Another disadvantage associated with the double haploidy is the cost involved in establishing tissue culture and growth facilities. The over-usage of doubled haploidy may reduce genetic variation in breeding germplasm.
It has been suggested that many polyploidization events created new species, via a gain of adaptive traits, or by sexual incompatibility with their diploid counterparts. An example would be the recent speciation of allopolyploid Spartina — S. anglica; the polyploid plant is so successful that it is listed as an invasive species in many ...