enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electrode potential - Wikipedia

    en.wikipedia.org/wiki/Electrode_potential

    To avoid possible ambiguities, the electrode potential thus defined can also be referred to as Gibbs–Stockholm electrode potential. In both conventions, the standard hydrogen electrode is defined to have a potential of 0 V. Both conventions also agree on the sign of E for a half-cell reaction when it is written as a reduction.

  3. Standard electrode potential - Wikipedia

    en.wikipedia.org/wiki/Standard_electrode_potential

    The galvanic cell potential results from the voltage difference of a pair of electrodes. It is not possible to measure an absolute value for each electrode separately. However, the potential of a reference electrode, standard hydrogen electrode (SHE), is defined as to 0.00 V. An electrode with unknown electrode potential can be paired with ...

  4. Standard electrode potential (data page) - Wikipedia

    en.wikipedia.org/wiki/Standard_electrode...

    The data below tabulates standard electrode potentials (E°), in volts relative to the standard hydrogen electrode (SHE), at: Temperature 298.15 K (25.00 °C; 77.00 °F); Effective concentration (activity) 1 mol/L for each aqueous or amalgamated (mercury-alloyed) species; Unit activity for each solvent and pure solid or liquid species; and

  5. Standard hydrogen electrode - Wikipedia

    en.wikipedia.org/wiki/Standard_hydrogen_electrode

    During the early development of electrochemistry, researchers used the normal hydrogen electrode as their standard for zero potential. This was convenient because it could actually be constructed by "[immersing] a platinum electrode into a solution of 1 N strong acid and [bubbling] hydrogen gas through the solution at about 1 atm pressure".

  6. Electrochemistry - Wikipedia

    en.wikipedia.org/wiki/Electrochemistry

    By definition, the electrode potential for the SHE is zero. Thus, the Cu is the cathode and the SHE is the anode giving E cell = E°(Cu 2+ /Cu) – E°(H + /H 2) Or, E°(Cu 2+ /Cu) = 0.34 V. Changes in the stoichiometric coefficients of a balanced cell equation will not change the E° red value because the standard electrode potential is an ...

  7. Absolute electrode potential - Wikipedia

    en.wikipedia.org/wiki/Absolute_electrode_potential

    Absolute electrode potential, in electrochemistry, according to an IUPAC definition, [1] is the electrode potential of a metal measured with respect to a universal reference system (without any additional metal–solution interface).

  8. Galvanic cell - Wikipedia

    en.wikipedia.org/wiki/Galvanic_cell

    A galvanic cell consists of two half-cells, such that the electrode of one half-cell is composed of metal A, and the electrode of the other half-cell is composed of metal B; the redox reactions for the two separate half-cells are thus: A n + + n e − ⇌ A B m + + m e − ⇌ B. The overall balanced reaction is:

  9. Electrochemical cell - Wikipedia

    en.wikipedia.org/wiki/Electrochemical_cell

    The cell potential can be predicted through the use of electrode potentials (the voltages of each half-cell). These half-cell potentials are defined relative to the assignment of 0 volts to the standard hydrogen electrode (SHE). (See table of standard electrode potentials). The difference in voltage between electrode potentials gives a ...