enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. C4 carbon fixation - Wikipedia

    en.wikipedia.org/wiki/C4_carbon_fixation

    C 4 plants have a competitive advantage over plants possessing the more common C 3 carbon fixation pathway under conditions of drought, high temperatures, and nitrogen or CO 2 limitation. When grown in the same environment, at 30 °C, C 3 grasses lose approximately 833 molecules of water per CO 2 molecule that is fixed, whereas C 4 grasses

  3. Photosynthesis - Wikipedia

    en.wikipedia.org/wiki/Photosynthesis

    This process, called photorespiration, uses energy, but does not produce sugars. RuBisCO oxygenase activity is disadvantageous to plants for several reasons: One product of oxygenase activity is phosphoglycolate (2 carbon) instead of 3-phosphoglycerate (3 carbon). Phosphoglycolate cannot be metabolized by the Calvin-Benson cycle and represents ...

  4. Fractionation of carbon isotopes in oxygenic photosynthesis

    en.wikipedia.org/wiki/Fractionation_of_carbon...

    These plants differ from C3 plants because CO 2 is initially converted to a four-carbon molecule, malate, which is shuttled to bundle sheath cells, released back as CO 2 and only then enters the Calvin Cycle. In contrast, C3 plants directly perform the Calvin Cycle in mesophyll cells, without making use of a CO 2 concentration method. Malate ...

  5. Stroma (fluid) - Wikipedia

    en.wikipedia.org/wiki/Stroma_(fluid)

    During the second stage, the light-independent reactions use these products to fix carbon by capturing and reducing carbon dioxide. The series of biochemical redox reactions which take place in the stroma are collectively called the Calvin cycle or light-independent reactions .

  6. Photosystem - Wikipedia

    en.wikipedia.org/wiki/Photosystem

    If electrons only pass through once, the process is termed noncyclic photophosphorylation, but if they pass through PSI and the proton pump multiple times it is called cyclic photophosphorylation. When the electron reaches photosystem I, it fills the electron deficit of light-excited reaction-center chlorophyll P700 + of PSI.

  7. Light-dependent reactions - Wikipedia

    en.wikipedia.org/wiki/Light-dependent_reactions

    The process occurs with astonishingly high efficiency. Electrons are removed from excited chlorophyll molecules and transferred through a series of intermediate carriers to ferredoxin, a water-soluble electron carrier. As in PSII, this is a solid-state process that operates with 100% efficiency.

  8. Photosystem II - Wikipedia

    en.wikipedia.org/wiki/Photosystem_II

    Photosystem II (of cyanobacteria and green plants) is composed of around 20 subunits (depending on the organism) as well as other accessory, light-harvesting proteins. Each photosystem II contains at least 99 cofactors: 35 chlorophyll a, 12 beta-carotene , two pheophytin , two plastoquinone , two heme , one bicarbonate, 20 lipids, the Mn

  9. Phloem - Wikipedia

    en.wikipedia.org/wiki/Phloem

    Phloem (/ ˈ f l oʊ. əm /, FLOH-əm) is the living tissue in vascular plants that transports the soluble organic compounds made during photosynthesis and known as photosynthates, in particular the sugar sucrose, [1] to the rest of the plant.