enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cross-validation (statistics) - Wikipedia

    en.wikipedia.org/wiki/Cross-validation_(statistics)

    If cross-validation is used to decide which features to use, an inner cross-validation to carry out the feature selection on every training set must be performed. [30] Performing mean-centering, rescaling, dimensionality reduction, outlier removal or any other data-dependent preprocessing using the entire data set.

  3. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  4. Generalization error - Wikipedia

    en.wikipedia.org/wiki/Generalization_error

    The amount of overfitting can be tested using cross-validation methods, that split the sample into simulated training samples and testing samples. The model is then trained on a training sample and evaluated on the testing sample.

  5. Data validation - Wikipedia

    en.wikipedia.org/wiki/Data_validation

    In evaluating the basics of data validation, generalizations can be made regarding the different kinds of validation according to their scope, complexity, and purpose. For example: Data type validation; Range and constraint validation; Code and cross-reference validation; Structured validation; and; Consistency validation

  6. Walk forward optimization - Wikipedia

    en.wikipedia.org/wiki/Walk_forward_optimization

    Walk Forward Analysis is now widely considered the "gold standard" in trading strategy validation. The trading strategy is optimized with in-sample data for a time window in a data series. The remaining data is reserved for out of sample testing. A small portion of the reserved data following the in-sample data is tested and the results are ...

  7. Out-of-bag error - Wikipedia

    en.wikipedia.org/wiki/Out-of-bag_error

    When bootstrap aggregating is performed, two independent sets are created. One set, the bootstrap sample, is the data chosen to be "in-the-bag" by sampling with replacement.

  8. PRESS statistic - Wikipedia

    en.wikipedia.org/wiki/PRESS_statistic

    Instead of fitting only one model on all data, leave-one-out cross-validation is used to fit N models (on N observations) where for each model one data point is left out from the training set. The out-of-sample predicted value is calculated for the omitted observation in each case, and the PRESS statistic is calculated as the sum of the squares ...

  9. Statistical model validation - Wikipedia

    en.wikipedia.org/wiki/Statistical_model_validation

    Cross validation is a method of model validation that iteratively refits the model, each time leaving out just a small sample and comparing whether the samples left out are predicted by the model: there are many kinds of cross validation. Predictive simulation is used to compare simulated data to actual data.