Search results
Results from the WOW.Com Content Network
In mathematics, the magnitude or size of a mathematical object is a property which determines whether the object is larger or smaller than other objects of the same kind. More formally, an object's magnitude is the displayed result of an ordering (or ranking) of the class of objects to which it belongs.
differential vector element of surface area A, with infinitesimally small magnitude and direction normal to surface S: square meter (m 2) differential element of volume V enclosed by surface S: cubic meter (m 3) electric field: newton per coulomb (N⋅C −1), or equivalently, volt per meter (V⋅m −1)
[9]: 28 Newton's original formula was: where the symbol means "is proportional to". To make this into an equal-sided formula or equation, there needed to be a multiplying factor or constant that would give the correct force of gravity no matter the value of the masses or distance between them (the gravitational constant).
Following ISO 80000-1, [1] any value or magnitude of a physical quantity is expressed as a comparison to a unit of that quantity. The value of a physical quantity Z is expressed as the product of a numerical value {Z} (a pure number) and a unit [Z]:
A scalar in physics and other areas of science is also a scalar in mathematics, as an element of a mathematical field used to define a vector space.For example, the magnitude (or length) of an electric field vector is calculated as the square root of its absolute square (the inner product of the electric field with itself); so, the inner product's result is an element of the mathematical field ...
In physics, action is a scalar quantity that describes how the balance of kinetic versus potential energy of a physical system changes with trajectory. Action is significant because it is an input to the principle of stationary action, an approach to classical mechanics that is simpler for multiple objects. [1]
Astronomers use the term "flux" for what is often called "intensity" in physics, in order to avoid confusion with the specific intensity. Using this formula, the magnitude scale can be extended beyond the ancient magnitude 1–6 range, and it becomes a precise measure of brightness rather than simply a classification system.
Momentum is also conserved in special relativity (with a modified formula) and, in a modified form, in electrodynamics, quantum mechanics, quantum field theory, and general relativity. It is an expression of one of the fundamental symmetries of space and time: translational symmetry .