Search results
Results from the WOW.Com Content Network
A "parameter" is to a population as a "statistic" is to a sample; that is to say, a parameter describes the true value calculated from the full population (such as the population mean), whereas a statistic is an estimated measurement of the parameter based on a sample (such as the sample mean). Thus a "statistical parameter" can be more ...
Parametric statistics is a branch of statistics which leverages models based on a fixed (finite) set of parameters. [1] Conversely nonparametric statistics does not assume explicit (finite-parametric) mathematical forms for distributions when modeling data. However, it may make some assumptions about that distribution, such as continuity or ...
Greek letters (e.g. θ, β) are commonly used to denote unknown parameters (population parameters). [3]A tilde (~) denotes "has the probability distribution of". Placing a hat, or caret (also known as a circumflex), over a true parameter denotes an estimator of it, e.g., ^ is an estimator for .
A statistic (singular) or sample statistic is any quantity computed from values in a sample which is considered for a statistical purpose. Statistical purposes include estimating a population parameter, describing a sample, or evaluating a hypothesis. The average (or mean) of sample values is a statistic. The term statistic is used both for the ...
In statistics, the number of degrees of freedom is the number of values in the final calculation of a statistic that are free to vary. [1] Estimates of statistical parameters can be based upon different amounts of information or data. The number of independent pieces of information that go into the estimate of a parameter is called the degrees ...
In statistics, identifiability is a property which a model must satisfy for precise inference to be possible. A model is identifiable if it is theoretically possible to learn the true values of this model's underlying parameters after obtaining an infinite number of observations from it.
Such a parameter must affect the shape of a distribution rather than simply shifting it (as a location parameter does) or stretching/shrinking it (as a scale parameter does). For example, "peakedness" refers to how round the main peak is. [3] Probability density functions for selected distributions with mean 0 and variance 1.
In statistics, sufficiency is a property of a statistic computed on a sample dataset in relation to a parametric model of the dataset. A sufficient statistic contains all of the information that the dataset provides about the model parameters.