enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gram matrix - Wikipedia

    en.wikipedia.org/wiki/Gram_matrix

    The Gram matrix is symmetric in the case the inner product is real-valued; it is Hermitian in the general, complex case by definition of an inner product. The Gram matrix is positive semidefinite, and every positive semidefinite matrix is the Gramian matrix for some set of vectors. The fact that the Gramian matrix is positive-semidefinite can ...

  3. Definite matrix - Wikipedia

    en.wikipedia.org/wiki/Definite_matrix

    In mathematics, a symmetric matrix with real entries is positive-definite if the real number is positive for every nonzero real column vector , where is the row vector transpose of . [1] More generally, a Hermitian matrix (that is, a complex matrix equal to its conjugate transpose) is positive-definite if the real number is positive for every nonzero complex column vector , where denotes the ...

  4. Positive semidefinite - Wikipedia

    en.wikipedia.org/wiki/Positive_semidefinite

    Positive semidefinite matrix; Positive semidefinite quadratic form; Positive semidefinite bilinear form This page was last edited on 2 May 2021, at 17:28 (UTC). Text ...

  5. Hadamard's maximal determinant problem - Wikipedia

    en.wikipedia.org/wiki/Hadamard's_maximal...

    The Gram matrix of R is defined to be the matrix G = RR T. From this definition it follows that G. is an integer matrix, is symmetric, is positive-semidefinite,

  6. Euclidean distance matrix - Wikipedia

    en.wikipedia.org/wiki/Euclidean_distance_matrix

    Matrices that can be decomposed as , that is, Gram matrices of some sequence of vectors (columns of ), are well understood — these are precisely positive semidefinite matrices. To relate the Euclidean distance matrix to the Gram matrix, observe that

  7. Semidefinite programming - Wikipedia

    en.wikipedia.org/wiki/Semidefinite_programming

    An matrix is said to be positive semidefinite if it is the Gram matrix of some vectors (i.e. if there exist vectors , …, such that , = for all ,). If this is the case, we denote this as M ⪰ 0 {\displaystyle M\succeq 0} .

  8. Nonnegative matrix - Wikipedia

    en.wikipedia.org/wiki/Nonnegative_matrix

    A positive matrix is a matrix in which all the elements are strictly greater than zero. The set of positive matrices is the interior of the set of all non-negative matrices. While such matrices are commonly found, the term "positive matrix" is only occasionally used due to the possible confusion with positive-definite matrices, which are different.

  9. Hadamard's inequality - Wikipedia

    en.wikipedia.org/wiki/Hadamard's_inequality

    Equality in this bound is attained for a real matrix N if and only if N is a Hadamard matrix. A positive-semidefinite matrix P can be written as N * N, where N * denotes the conjugate transpose of N (see Decomposition of a semidefinite matrix). Then