Search results
Results from the WOW.Com Content Network
See also: oxidation states in {{infobox element}} [ edit ] The oxidation states are also maintained in articles of the elements (of course), and systematically in the table {{ Infobox element/symbol-to-oxidation-state }} (An overview is here ).
Oxidation states are typically represented by integers which may be positive, zero, or negative. In some cases, the average oxidation state of an element is a fraction, such as 8 / 3 for iron in magnetite Fe 3 O 4 . The highest known oxidation state is reported to be +9, displayed by iridium in the tetroxoiridium(IX) cation (IrO + 4). [1]
Nitrogen is a chemical element; it has symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at seventh in total abundance in the Milky Way and the Solar System.
Elements in a high oxidation state have an oxidation state higher than +4, and also, ... For example, nitrogen has a maximum valence of 5, in forming ammonia two ...
Nitric oxide (nitrogen oxide or nitrogen monoxide [1]) is a colorless gas with the formula NO. It is one of the principal oxides of nitrogen . Nitric oxide is a free radical : it has an unpaired electron , which is sometimes denoted by a dot in its chemical formula ( • N=O or • NO).
The chemical element nitrogen is one of the most abundant elements in the universe and can form many compounds. It can take several oxidation states; but the most common oxidation states are -3 and +3. Nitrogen can form nitride and nitrate ions. It also forms a part of nitric acid and nitrate salts.
In the NO − 3 anion, the oxidation state of the central nitrogen atom is V (+5). This corresponds to the highest possible oxidation number of nitrogen. Nitrate is a potentially powerful oxidizer as evidenced by its explosive behaviour at high temperature when it is detonated in ammonium nitrate (NH 4 NO 3), or black powder, ignited by the shock wave of a primary explosive.
At high temperatures, usually above 1300 °C (2600 °F), molecular nitrogen (N 2) and oxygen (O 2) in the combustion air dissociate into their atomic states and participate in a series of reactions. The three principal reactions (the extended Zel'dovich mechanism ) producing thermal NO x are: