Search results
Results from the WOW.Com Content Network
Visualization of powers of two from 1 to 1024 (2 0 to 2 10) as base-2 Dienes blocks. A power of two is a number of the form 2 n where n is an integer, that is, the result of exponentiation with number two as the base and integer n as the exponent. In the fast-growing hierarchy, 2 n is exactly equal to ().
There is also a connection formula for the ratio of two rising factorials given by () = (+) (),. Additionally, we can expand generalized exponent laws and negative rising and falling powers through the following identities: [ 11 ] (p 52)
Grouping the prime factors of the factorial into prime powers in different ways produces the multiplicative partitions of factorials. [ 56 ] The special case of Legendre's formula for p = 5 {\displaystyle p=5} gives the number of trailing zeros in the decimal representation of the factorials. [ 57 ]
In the same way that the double factorial generalizes the notion of the single factorial, the following definition of the integer-valued multiple factorial functions (multifactorials), or α-factorial functions, extends the notion of the double factorial function for positive integers :
An exponential factorial is an operation recursively defined as =, = . For example, a 4 = 4 3 2 1 {\displaystyle \ a_{4}=4^{3^{2^{1}}}\ } where the exponents are evaluated from the top down. The sum of the reciprocals of the exponential factorials from 1 onward is approximately 1.6111 and is transcendental.
As one special case, it can be used to prove that if n is a positive integer then 4 divides () if and only if n is not a power of 2. It follows from Legendre's formula that the p -adic exponential function has radius of convergence p − 1 / ( p − 1 ) {\displaystyle p^{-1/(p-1)}} .
In mathematics, exponentiation, denoted b n, is an operation involving two numbers: the base, b, and the exponent or power, n. [1] When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, b n is the product of multiplying n bases: [1] = ⏟.
The first four partial sums of 1 + 2 + 4 + 8 + ⋯. In mathematics, 1 + 2 + 4 + 8 + ⋯ is the infinite series whose terms are the successive powers of two.As a geometric series, it is characterized by its first term, 1, and its common ratio, 2.