Search results
Results from the WOW.Com Content Network
Hydroformylation of alkenes is the most important method for obtaining aliphatic formyls (i.e., aldehydes). The reaction is largely restricted to industrial settings. Several specialty methods exist for laboratory-scale synthesis, including the Sommelet reaction, Bouveault aldehyde synthesis or Bodroux–Chichibabin aldehyde synthesis.
An enal (or alkenal) is an organic compound containing both alkene and aldehyde functional groups. In an α,β-unsaturated enal, the alkene is conjugated to the carbonyl group of the aldehyde (formyl group). [3] The simplest enal is acrolein (CH 2 =CHCHO). Other examples include cis-3-hexenal (essence of mowed lawns) and cinnamaldehyde (essence ...
The Wittig reaction or Wittig olefination is a chemical reaction of an aldehyde or ketone with a triphenyl phosphonium ylide called a Wittig reagent.Wittig reactions are most commonly used to convert aldehydes and ketones to alkenes.
Conversion of the cis-aldehyde to its corresponding alkene by Wittig olefination and subsequent ring-closing metathesis with a Schrock catalyst gave the second ring of the alkaloid core. The diene in this instance is notable as an example of a 1-amino-3-siloxybutadiene, otherwise known as a Rawal diene. [83]
In organic chemistry, a rearrangement reaction is a broad class of organic reactions where the carbon skeleton of a molecule is rearranged to give a structural isomer of the original molecule. [1] Often a substituent moves from one atom to another atom in the same molecule, hence these reactions are usually intramolecular. In the example below ...
The Prins reaction is an organic reaction consisting of an electrophilic addition of an aldehyde or ketone to an alkene or alkyne followed by capture of a nucleophile or elimination of an H + ion. [ 1 ] [ 2 ] [ 3 ] The outcome of the reaction depends on reaction conditions.
The Shapiro reaction or tosylhydrazone decomposition is an organic reaction in which a ketone or aldehyde is converted to an alkene through an intermediate hydrazone in the presence of 2 equivalents of organolithium reagent. [1] [2] [3] The reaction was discovered by Robert H. Shapiro in 1967. [4]
It is possible to isolate nitrogen-containing compounds using the Büchner–Curtius–Schlotterbeck reaction. For example, an acyl-diazomethane can react with an aldehyde in the presence of a DBU catalyst to form isolable α-diazo-β-hydroxy esters (shown below). [27]