Search results
Results from the WOW.Com Content Network
Hydroformylation of alkenes is the most important method for obtaining aliphatic formyls (i.e., aldehydes). The reaction is largely restricted to industrial settings. Several specialty methods exist for laboratory-scale synthesis, including the Sommelet reaction, Bouveault aldehyde synthesis or Bodroux–Chichibabin aldehyde synthesis.
An enal (or alkenal) is an organic compound containing both alkene and aldehyde functional groups. In an α,β-unsaturated enal, the alkene is conjugated to the carbonyl group of the aldehyde (formyl group). [3] The simplest enal is acrolein (CH 2 =CHCHO). Other examples include cis-3-hexenal (essence of mowed lawns) and cinnamaldehyde (essence ...
In organic chemistry, enols are a type of Functional group or intermediate in organic chemistry containing a group with the formula C=C(OH) (R = many substituents). The term enol is an abbreviation of alkenol, a portmanteau deriving from "-ene"/"alkene" and the "-ol". Many kinds of enols are known. [1]
In organic chemistry, a rearrangement reaction is a broad class of organic reactions where the carbon skeleton of a molecule is rearranged to give a structural isomer of the original molecule. [1] Often a substituent moves from one atom to another atom in the same molecule, hence these reactions are usually intramolecular. In the example below ...
In organic chemistry an enol ether is an alkene with an alkoxy substituent. [1] The general structure is R 2 C=CR-OR where R = H, alkyl or aryl. A common subfamily of enol ethers are vinyl ethers, with the formula ROCH=CH 2. Important enol ethers include the reagent 3,4-dihydropyran and the monomers methyl vinyl ether and ethyl vinyl ether.
In chemistry, the haloform reaction (also referred to as the Lieben haloform reaction) is a chemical reaction in which a haloform (CHX 3, where X is a halogen) is produced by the exhaustive halogenation of an acetyl group (R−C(=O)CH 3, where R can be either a hydrogen atom, an alkyl or an aryl group), in the presence of a base.
The Shapiro reaction or tosylhydrazone decomposition is an organic reaction in which a ketone or aldehyde is converted to an alkene through an intermediate hydrazone in the presence of 2 equivalents of organolithium reagent. [1] [2] [3] The reaction was discovered by Robert H. Shapiro in 1967. [4]
The Prins reaction is an organic reaction consisting of an electrophilic addition of an aldehyde or ketone to an alkene or alkyne followed by capture of a nucleophile or elimination of an H + ion. [ 1 ] [ 2 ] [ 3 ] The outcome of the reaction depends on reaction conditions.