enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Solar rotation - Wikipedia

    en.wikipedia.org/wiki/Solar_rotation

    At the equator, the solar rotation period is 24.47 days. This is called the sidereal rotation period, and should not be confused with the synodic rotation period of 26.24 days, which is the time for a fixed feature on the Sun to rotate to the same apparent position as viewed from Earth (the Earth's orbital rotation is in the same direction as the Sun's rotation).

  3. Sun - Wikipedia

    en.wikipedia.org/wiki/Sun

    The Sun rotates faster at its equator than at its poles. This differential rotation is caused by convective motion due to heat transport and the Coriolis force due to the Sun's rotation. In a frame of reference defined by the stars, the rotational period is approximately 25.6 days at the equator and 33.5 days at the poles.

  4. Water cycle - Wikipedia

    en.wikipedia.org/wiki/Water_cycle

    The ocean plays a key role in the water cycle as it is the source of 86% of global evaporation. [2] The water cycle involves the exchange of energy, which leads to temperature changes. When water evaporates, it takes up energy from its surroundings and cools the environment. When it condenses, it releases energy and warms the environment.

  5. Effect of Sun angle on climate - Wikipedia

    en.wikipedia.org/wiki/Effect_of_Sun_angle_on_climate

    At the equator (0° latitude), on the equinoxes, the sun angle is always 90° no matter the axial tilt, while on the solstices the minimum sun angle is equal to 90° minus the tilt. Therefore, greater tilt means a lower minimum for the same maximum: less total annual surface insolation at the equator.

  6. Rotation period (astronomy) - Wikipedia

    en.wikipedia.org/wiki/Rotation_period_(astronomy)

    Rotation period with respect to distant stars, the sidereal rotation period (compared to Earth's mean Solar days) Synodic rotation period (mean Solar day) Apparent rotational period viewed from Earth Sun [i] 25.379995 days (Carrington rotation) 35 days (high latitude) 25 d 9 h 7 m 11.6 s 35 d ~28 days (equatorial) [2] Mercury: 58.6462 days [3 ...

  7. Sun path - Wikipedia

    en.wikipedia.org/wiki/Sun_path

    Sun path, sometimes also called day arc, refers to the daily (sunrise to sunset) and seasonal arc-like path that the Sun appears to follow across the sky as the Earth rotates and orbits the Sun. The Sun's path affects the length of daytime experienced and amount of daylight received along a certain latitude during a given season.

  8. Equator - Wikipedia

    en.wikipedia.org/wiki/Equator

    The Equator during the boreal winter, spanning from December to March. The equator is a circle of latitude that divides a spheroid, such as Earth, into the Northern and Southern hemispheres. On Earth, the Equator is an imaginary line located at 0 degrees latitude, about 40,075 km (24,901 mi) in circumference, halfway between the North and South ...

  9. Analemma - Wikipedia

    en.wikipedia.org/wiki/Analemma

    It can be useful to compare it with the length of the analemma, which subtends 47°. Thus, for example, if the length of the equatorial segment on the diagram is 0.4 times the length of the analemma on the diagram, then the segment in the celestial analemma would subtend 0.4 × 47° = 18.8° at the observer on the ground.