enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gram matrix - Wikipedia

    en.wikipedia.org/wiki/Gram_matrix

    The Gram matrix is symmetric in the case the inner product is real-valued; it is Hermitian in the general, complex case by definition of an inner product. The Gram matrix is positive semidefinite, and every positive semidefinite matrix is the Gramian matrix for some set of vectors. The fact that the Gramian matrix is positive-semidefinite can ...

  3. Definite matrix - Wikipedia

    en.wikipedia.org/wiki/Definite_matrix

    In mathematics, a symmetric matrix with real entries is positive-definite if the real number is positive for every nonzero real column vector, where is the row vector transpose of . [1] More generally, a Hermitian matrix (that is, a complex matrix equal to its conjugate transpose) is positive-definite if the real number is positive for every nonzero complex column vector , where denotes the ...

  4. Positive semidefinite - Wikipedia

    en.wikipedia.org/wiki/Positive_semidefinite

    In mathematics, positive semidefinite may refer to: Positive semidefinite function; Positive semidefinite matrix; Positive semidefinite quadratic form;

  5. Square root of a matrix - Wikipedia

    en.wikipedia.org/wiki/Square_root_of_a_matrix

    If the diagonal elements of D are real and non-negative then it is positive semidefinite, and if the square roots are taken with the (+) sign (i.e. all non-negative), the resulting matrix is the principal root of D. A diagonal matrix may have additional non-diagonal roots if some entries on the diagonal are equal, as exemplified by the identity ...

  6. Euclidean distance matrix - Wikipedia

    en.wikipedia.org/wiki/Euclidean_distance_matrix

    Matrices that can be decomposed as , that is, Gram matrices of some sequence of vectors (columns of ), are well understood — these are precisely positive semidefinite matrices. To relate the Euclidean distance matrix to the Gram matrix, observe that

  7. Sylvester's criterion - Wikipedia

    en.wikipedia.org/wiki/Sylvester's_criterion

    For the reverse implication, it suffices to show that if has all non-negative principal minors, then for all t>0, all leading principal minors of the Hermitian matrix + are strictly positive, where is the nxn identity matrix. Indeed, from the positive definite case, we would know that the matrices + are strictly positive definite.

  8. Nonnegative matrix - Wikipedia

    en.wikipedia.org/wiki/Nonnegative_matrix

    The exception is the non-negative monomial matrices: a non-negative matrix has non-negative inverse if and only if it is a (non-negative) monomial matrix. Note that thus the inverse of a positive matrix is not positive or even non-negative, as positive matrices are not monomial, for dimension n > 1.

  9. Cholesky decomposition - Wikipedia

    en.wikipedia.org/wiki/Cholesky_decomposition

    In linear algebra, the Cholesky decomposition or Cholesky factorization (pronounced / ʃ ə ˈ l ɛ s k i / shə-LES-kee) is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations.