Search results
Results from the WOW.Com Content Network
The assertion that Q is necessary for P is colloquially equivalent to "P cannot be true unless Q is true" or "if Q is false, then P is false". [9] [1] By contraposition, this is the same thing as "whenever P is true, so is Q". The logical relation between P and Q is expressed as "if P, then Q" and denoted "P ⇒ Q" (P implies Q).
In other words, a logical truth is a statement which is not only true, but one which is true under all interpretations of its logical components (other than its logical constants). Thus, logical truths such as "if p, then p" can be considered tautologies.
It has the following form: p; if p then q; therefore q. This scheme is deductively valid no matter what p and q stand for. [41] [5] For example, the argument "today is Sunday; if today is Sunday then I don't have to go to work today; therefore I don't have to go to work today" is deductively valid because it has the form of modus ponens. [42]
Then if is true, that rules out the first disjunct, so we have . In short, P → Q {\displaystyle P\to Q} . [ 3 ] However, if P {\displaystyle P} is false, then this entailment fails, because the first disjunct ¬ P {\displaystyle \neg P} is true, which puts no constraint on the second disjunct Q {\displaystyle Q} .
These examples, one from mathematics and one from natural language, illustrate the concept of vacuous truths: "For any integer x, if x > 5 then x > 3." [11] – This statement is true non-vacuously (since some integers are indeed greater than 5), but some of its implications are only vacuously true: for example, when x is the integer 2, the statement implies the vacuous truth that "if 2 > 5 ...
Now that we're more than three quarters of the way through the 2024 fantasy football regular season, ... (this number drops as the season goes on and people look to consolidate). For example: Joe ...
The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.
The statement A ∨ B is true if A or B (or both) are true; if both are false, the statement is false. n ≥ 4 ∨ n ≤ 2 ⇔ n ≠ 3 when n is a natural number . ⊕