enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ideal gas law - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas_law

    Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...

  3. Thermal equation of state of solids - Wikipedia

    en.wikipedia.org/wiki/Thermal_equation_of_state...

    In physics, the thermal equation of state is a mathematical expression of pressure P, temperature T, and, volume V.The thermal equation of state for ideal gases is the ideal gas law, expressed as PV=nRT (where R is the gas constant and n the amount of substance), while the thermal equation of state for solids is expressed as:

  4. Gas constant - Wikipedia

    en.wikipedia.org/wiki/Gas_constant

    From the ideal gas law PV = nRT we get: = where P is pressure, V is volume, n is number of moles of a given substance, and T is temperature. As pressure is defined as force per area of measurement, the gas equation can also be written as:

  5. Isothermal process - Wikipedia

    en.wikipedia.org/wiki/Isothermal_process

    For the special case of a gas to which Boyle's law [4] applies, the product pV (p for gas pressure and V for gas volume) is a constant if the gas is kept at isothermal conditions. The value of the constant is nRT, where n is the number of moles of the present gas and R is the ideal gas constant. In other words, the ideal gas law pV = nRT ...

  6. Gas laws - Wikipedia

    en.wikipedia.org/wiki/Gas_laws

    The laws describing the behaviour of gases under fixed pressure, volume, amount of gas, and absolute temperature conditions are called gas laws.The basic gas laws were discovered by the end of the 18th century when scientists found out that relationships between pressure, volume and temperature of a sample of gas could be obtained which would hold to approximation for all gases.

  7. Thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Thermodynamics

    From the ideal gas law pV=nRT, the volume of such a sample can be used as an indicator of temperature; in this manner it defines temperature. Although pressure is defined mechanically, a pressure-measuring device, called a barometer may also be constructed from a sample of an ideal gas held at a constant temperature.

  8. Isentropic process - Wikipedia

    en.wikipedia.org/wiki/Isentropic_process

    T–s (entropy vs. temperature) diagram of an isentropic process, which is a vertical line segment. The entropy of a given mass does not change during a process that is internally reversible and adiabatic.

  9. Avogadro's law - Wikipedia

    en.wikipedia.org/wiki/Avogadro's_Law

    Experimental studies carried out by Charles Frédéric Gerhardt and Auguste Laurent on organic chemistry demonstrated that Avogadro's law explained why the same quantities of molecules in a gas have the same volume. Nevertheless, related experiments with some inorganic substances showed seeming exceptions to the law.