Search results
Results from the WOW.Com Content Network
Another method of deriving vector and tensor derivative identities is to replace all occurrences of a vector in an algebraic identity by the del operator, provided that no variable occurs both inside and outside the scope of an operator or both inside the scope of one operator in a term and outside the scope of another operator in the same term ...
The steepness of the slope at that point is given by the magnitude of the gradient vector. The gradient can also be used to measure how a scalar field changes in other directions, rather than just the direction of greatest change, by taking a dot product. Suppose that the steepest slope on a hill is 40%.
The gradient theorem states that if the vector field F is the gradient of some scalar-valued function (i.e., if F is conservative), then F is a path-independent vector field (i.e., the integral of F over some piecewise-differentiable curve is dependent only on end points). This theorem has a powerful converse:
When m = 1, that is when f : R n → R is a scalar-valued function, the Jacobian matrix reduces to the row vector; this row vector of all first-order partial derivatives of f is the transpose of the gradient of f, i.e. =.
A comparison of the convergence of gradient descent with optimal step size (in green) and conjugate vector (in red) for minimizing a quadratic function associated with a given linear system. Conjugate gradient, assuming exact arithmetic, converges in at most n steps, where n is the size of the matrix of the system (here n = 2).
If W is a vector field with curl(W) = V, then adding any gradient vector field grad(f) to W will result in another vector field W + grad(f) such that curl(W + grad(f)) = V as well. This can be summarized by saying that the inverse curl of a three-dimensional vector field can be obtained up to an unknown irrotational field with the Biot–Savart ...
The polar angle is denoted by [,]: it is the angle between the z-axis and the radial vector connecting the origin to the point in question. The azimuthal angle is denoted by φ ∈ [ 0 , 2 π ] {\displaystyle \varphi \in [0,2\pi ]} : it is the angle between the x -axis and the projection of the radial vector onto the xy -plane.
A similar process can be used to arrive at the gradient of a vector field f(x). The gradient is given by [()] = If we consider the gradient of the position vector field r(x) = x, then we can show that = = ; ():= The vector field b i is tangent to the q i coordinate curve and forms a natural basis at each point on the curve.