Search results
Results from the WOW.Com Content Network
Translation in plants is tightly regulated as in animals, however, it is not as well understood as transcriptional regulation. There are several levels of regulation including translation initiation, mRNA turnover and ribosome loading. Recent studies have shown that translation is also under the control of the circadian clock.
Initiation of translation in bacteria involves the assembly of the components of the translation system, which are: the two ribosomal subunits (50S and 30S subunits); the mature mRNA to be translated; the tRNA charged with N-formylmethionine (the first amino acid in the nascent peptide); guanosine triphosphate (GTP) as a source of energy, and the three prokaryotic initiation factors IF1, IF2 ...
Transcription-translation coupling is a mechanism of gene expression regulation in which synthesis of an mRNA (transcription) is affected by its concurrent decoding (translation). In prokaryotes , mRNAs are translated while they are transcribed.
An example is the trp gene in bacteria. When there is a high level of tryptophan in the region, it is inefficient for the bacterium to synthesize more. When the RNA polymerase binds and transcribes the trp gene, the ribosome will start translating. (This differs from eukaryotic cells, where RNA must exit the nucleus before translation starts.)
Gene regulation works using operators and repressors in bacteria. Gene Regulation can be summarized by the response of the respective system: Inducible systems - An inducible system is off unless there is the presence of some molecule (called an inducer) that allows for gene expression. The molecule is said to "induce expression".
Bacterial transcription differs from eukaryotic transcription in several ways. In bacteria, transcription and translation can occur simultaneously in the cytoplasm of the cell, whereas in eukaryotes transcription occurs in the nucleus and translation occurs in the cytoplasm. [14]
In prokaryotes (bacteria and archaea), translation occurs in the cytosol, where the large and small subunits of the ribosome bind to the mRNA. In eukaryotes, translation occurs in the cytoplasm or across the membrane of the endoplasmic reticulum through a process called co-translational translocation.
Translation is one of the key energy consumers in cells, hence it is strictly regulated. Numerous mechanisms have evolved that control and regulate translation in eukaryotes as well as prokaryotes. Regulation of translation can impact the global rate of protein synthesis which is closely coupled to the metabolic and proliferative state of a cell.